Sunless Tanning: A Review

Ashley R. Curtis, BS; Daniel J. Sheehan, MD

Despite rising numbers of melanoma and nonmelanoma skin cancers, many Americans continue to tan their skin and believe that a tan enhances their appearance. It is well documented that ultraviolet (UV) radiation from the sun or indoor tanning beds is linked to skin cancer and accelerated aging of the skin. In an effort to reduce exposure to UV radiation, and subsequently decrease the risk of skin cancer, some dermatologists have advocated the use of sunless tanning products.

Most sunless tanning products contain the active ingredient dihydroxyacetone (DHA). DHA tans the skin by binding to amino acids in the stratum corneum, producing covalently bound chromophobes called melanoids through a process known as the Maillard browning reaction. To decrease the adverse effects associated with UV-radiation–induced tanning, physicians must continue to advocate a safe alternative. Sunless tanning with DHA-based formulations should be recommended to patients desiring a tanned appearance.

Ms. Curtis is a Medical Student, and Dr. Sheehan is Assistant Professor, Division of Dermatology, Department of Medicine, both at the Medical College of Georgia, Augusta.

The authors report no actual or potential conflicts of interest in relation to this article.
A Review of Sunless Tanning

BASIC SCIENCE OF SUNLESS TANNING

DHA is a 3-carbon sugar involved in carbohydrate metabolism in higher plants and animals through processes such as glycolysis and photosynthesis.17,19-21 DHA tans the skin by binding to amino acids in the stratum corneum, producing covalently bound chromophobes called melanoids through a process known as the Maillard browning reaction.1,8,19,20,22-24 This tanning effect is independent of light but is enhanced by UV radiation.25

To produce a sunless tanning product, DHA is usually added to a lotion, cream, liquid, or mousse base in concentrations ranging from 3% to 5%.2 The intensity of the color is dependent on the concentration, thus allowing for a wide range of shades to accommodate individual preference.8 Increasing the protein content of the stratum corneum may enhance coloring; thus, the shade achieved is dependent on the thickness of keratin as well.1,20,26 Rougher, hyperkeratotic skin, as well as freckled and mottled skin, takes up the color at an increased intensity, resulting in coloring irregularities.8 The brown color produced from DHA is resistant to soap and water but may be removed by sloughing of the stratum corneum, as with vigorous scrubbing.19,20,22,24 While the pigment from DHA takes several hours to form, many products now contain water-soluble dyes that impart immediate color upon application.

CLINICAL APPLICATIONS

Dermatologists encourage sunless tanning as an alternative to UV radiation, and fortunately, sunless tanning products have advanced in cosmetic appeal over the years. More recent products create a natural golden-brown hue as opposed to the orange color that often resulted from the use of older products. In addition to DHA-based topical tanning products, sunless tanning booths using a spray-on application have increased the ease and accessibility of UV-radiation–free tanning.4,8 In a recent study by Sheehan and Lesher,7 the majority of individuals who have used UV-radiation indoor tanning beds in the past reported doing so less frequently as a result of sunless tanning. Another recent study associated the use of sunless tanning products with increased sun protection behavior.27

Other studies have explored the possibility of continued indoor tanning despite known health risks as a psychosocial phenomenon or an addictive behavior learned in adolescence.3,5,14,28 Demko et al14 reported that 36.8% of white female adolescents and 11.2% of white male adolescents in their study population had used indoor tanning beds at least once. Feldman et al3 showed that UV exposure by indoor tanning beds in adolescents is a reinforcing stimulus. In addition, Zeller et al8 reported that teenagers who begin tanning at a young age do so frequently are more likely to have difficulty quitting. These findings are consistent with other addictive behaviors that can arise during adolescence.

Although DHA has been popularized as the browning agent in topical sunless tanning formulations, it is widely known for other uses as well. Initially, before the browning properties of DHA were discovered, this compound was used to treat diabetic coma, was administered to patients with diabetes as a glucose alternative, and was used as a tool to test for glycogen storage diseases.17 More recently, DHA has been investigated for its potential use in skin camouflaging for patients with vitiligo. Studies by Fesq et al20 and Suga et al29 showed it to be both a practical and well-accepted cosmetic treatment for this form of skin depigmentation. DHA has also been used to enhance photochemotherapy in psoriasis treatment.24

DHA-based formulations have been found to prevent the skin of patients with ultraviolet-A (UVA) sensitivity from developing skin reddening reactions.1 Bovendend and Belcher10 documented contact allergy to DHA. However, in a reply to these case reports, Johnson and Fucaro22 pointed out that the source of allergy was unlikely due to DHA. In a study by Fesq et al20, DHA was used to treat diabetic coma, was administered to patients with diabetes as a glucose alternative, and was used as a tool to test for glycogen storage diseases.17 More recently, DHA has been investigated for its potential use in skin camouflaging for patients with vitiligo. Studies by Fesq et al20 and Suga et al29 showed it to be both a practical and well-accepted cosmetic treatment for this form of skin depigmentation. DHA has also been used to enhance photochemotherapy in psoriasis treatment.24

DHA-based formulations have been found to prevent the skin of patients with ultraviolet-A (UVA) sensitivity from developing skin reddening reactions.1 Bovendend and Belcher10 documented contact allergy to DHA. However, in a reply to these case reports, Johnson and Fucaro22 pointed out that the source of allergy was unlikely due to DHA. In a study by Fesq et al20, DHA was used to treat diabetic coma, was administered to patients with diabetes as a glucose alternative, and was used as a tool to test for glycogen storage diseases.17 More recently, DHA has been investigated for its potential use in skin camouflaging for patients with vitiligo. Studies by Fesq et al20 and Suga et al29 showed it to be both a practical and well-accepted cosmetic treatment for this form of skin depigmentation. DHA has also been used to enhance photochemotherapy in psoriasis treatment.24

SAFETY

With the increasing use of DHA, physicians must consider not only its efficacy but safety issues as well. This 3-carbon sugar is a physiologic product of the body and is presumed to be nontoxic.10,23 DHA has been used as diet supplementation in rats to investigate postprandial glycogen metabolism; no adverse effects were noted.37 Two case reports published by Morren et al38 documented contact allergy to DHA. However, in a reply to these case reports, Johnson and Fusaro22 pointed out that the source and purity of DHA were not specified. Concerns have arisen about the possible mutagenic properties of DHA, and there are conflicting reports in the literature. Pham et al39 demonstrated in 1980 that DHA is mutagenic in the Salmonella mutagenicity assay. More recently, Petersen et al40 discovered DHA to induce DNA damage, cell-cycle block, and apoptosis in cultured keratinocytes. However, in another study, Petersen et al40 reported DHA to delay UV-radiation–induced photocarcinogenesis in hairless mice. Other investigators have shown DHA to have a lack of mutagenicity or even to be antimutagenic. Akin and Marlowe41 observed no increase in cancer in mice after application of topical DHA for 80 weeks. Furthermore,
Chan et al. reported that the products of the Maillard browning reaction are antimutagenic. Taken as a whole, the medical literature seems to support the safety of topical application of DHA. Safety concerns still remain with regard to the use of DHA during pregnancy and the possible theoretical risks involved in inhaling DHA or other components of the tanning solutions in spray-on booths.

CONCLUSION

Civilization has a long history of preoccupation with skin color. The golden-bronze look is seemingly attractive and one that many aspire to achieve. Therefore, the public will continue to engage in UV-radiation–induced tanning despite known health risks. To decrease the adverse effects associated with this practice, physicians must continue to advocate a safe alternative. Sunless tanning with DHA-based formulations should be recommended to patients desiring a tanned appearance. Patients should also be informed that use of sunless tanning products is not sufficient sun protection. Formulations with DHA result in a sun protection factor (SPF) of only 2 and offer no protection against ultraviolet-B light. In addition, the SPF gained from the sunless tanning product is effective only for a short period of time, not for the duration of the artificial tan. It is recommended that patients use a traditional sunscreen with an SPF of at least 15 in conjunction with the sunless tanner.

With more cosmetically appealing products now available, sunless tanning is becoming a safer alternative to the “traditional” tan. The long-term risks, if any, of consistent use of DHA in humans have not been fully elucidated. However, the compound appears to be safe. It is prudent for dermatologists to continue to recommend this alternative for skin tanning and to inform patients of the need for added SPF through the application of traditional sunscreen. Until society deems pale, nontanned skin attractive, we must continue to pursue alternatives to decrease UV-radiation–induced photocarcinogenesis.

REFERENCES

