Primary Multiple Miliary Osteoma Cutis and Exogenous Ochronosis

Paul H. Bowman, MD, Augusta, Georgia
Jack L. Lesher, Jr, MD, Augusta, Georgia

GOAL
To discuss a case of primary multiple miliary osteoma cutis (MMOC) and exogenous ochronosis

OBJECTIVES
Upon completion of this activity, dermatologists and general practitioners should be able to:
1. Describe the clinical presentation of primary MMOC.
2. Contrast primary MMOC with the classic form of MMOC.
3. Identify the characteristics and cause of accompanying exogenous ochronosis.

CME Test on page 119.

Multiple miliary osteoma cutis (MMOC), a rare disorder characterized by the appearance of numerous bony nodules on the face, was initially classified as a consequence of severe, long-standing acne vulgaris. However, several cases have now been described in patients with no preceding history of acne or other inflammatory conditions. We report such a case of primary MMOC in a 75-year-old African American woman and highlight the differences between these conditions. We also note the incidental histologic finding of exogenous ochronosis, which, in our case, indicates the patient’s use of hydroquinone-containing bleaching creams in an attempt to treat the disorder.

The term osteoma cutis is derived from the Greek and Latin words for bone (osteo) and skin (cutis) and refers to true bone that forms within cutaneous tissue. Both primary and secondary forms exist, the latter being defined by the presence of tumors (eg, pilomatricomas, chondroid syringomas, epidermal cysts) or inflammatory conditions (eg, acne vulgaris, dermatomyositis, scleroderma) that subsequently develop areas of ossification. Primary cutaneous ossification is more rare and has been reported to occur in both localized...
(nodules, plaques) and generalized (Albright’s hereditary osteodystrophy, progressive osseous heteroplasia) forms.1 We present our clinical and histologic findings in a case of primary multiple miliary osteoma cutis (MMOC) in an older woman.

Case Report

A 75-year-old African American woman presented with a 3-year history of yellowish lesions on her face. They were not itchy or painful but were accumulating to the point of being cosmetically troublesome. Her medical history was significant only for hypothyroidism, which had been controlled with levothyroxine replacement therapy. The patient denied any history of arthritis, antecedent lesions, acne vulgaris, or trauma to her face. She had used several over-the-counter topical acne medications and bleaching creams without any improvement. On examination, she had numerous discrete, 2- to 3-mm, firm, yellowish papulonodules on her forehead, cheeks, and chin, many with surrounding areas of hyperpigmentation (Figure 1).

Several lesions were removed by 3-mm punch biopsy for histologic examination. Each specimen revealed a solitary spherical piece of bone in the reticular dermis (Figure 2). There was no evidence of any inflammation, association with adnexal structures, or other neoplasm. Each piece of bone had a central marrow cavity, complete with numerous blood vessels and adipocytes. Higher magnification (Figure 3) revealed numerous osteocytes, haversian canals, osteoblasts laying down osteoid and multinucleated osteoclasts resorbing bone, and signs of active bone remodeling. In several specimens stained with hematoxylin and eosin (H&E), we also discovered collections of homogenous yellow-brown pigment in the upper dermis, directly above the bony nodule (Figure 4).

All laboratory results were normal, including complete blood count, serum calcium, phosphorus, alkaline phosphatase, calcitonin, 25-hydroxy vitamin D, and 1,25-dihydroxy vitamin D. Cutaneous calcifications were not evident on plain radiographs of the head and neck. After removing several of the larger lesions using a 3-mm punch biopsy, we began topical treatment with adapalene gel daily. The patient reported improvement in hyperpigmentation after several months using this therapy.

Comment

MMOC is a rare condition that was first described by Virchow2 in 1864 in a patient with multiple bony nodules on the face. The condition is usually asymptomatic but can become disfiguring as large numbers of lesions accumulate. Two variants of MMOC are now recognized.3 The classic form, categorized as a type of secondary cutaneous ossification (developing subsequent to inflammation or tumors), presents in young women in their 20s and 30s with a long history of facial acne vulgaris. However, 15 cases of primary MMOC have now been reported.1-5 In contrast to the classic form, primary MMOC presents in older women (50s to 70s) with no history of acne or other inflammatory dermatosis (Table 1).
As shown in our case, lesions of primary MMOC are composed of true bone tissue that is undergoing active remodeling. The pathogenesis is unclear and may involve differentiation of ectopic embryologic nests of mesenchymal cells into osteoblasts (hamartoma) or stimulation of dermal fibroblasts to become osteoblasts (metaplasia).7

Treatment is difficult and usually involves individual removal of the bony nodules. This can be done using a scalpel or punch biopsy instrument; dermabrasion8 and ablation with carbon dioxide or Erbium:YAG lasers9,10 also has been proven to be useful in treating this condition. Tetracycline double labeling has shown the bony lesions of MMOC to have high rates of internal remodeling; however, treatment using systemic etidronate disodium (a synthetic diphosphonate and inhibitor of bone metabolism) has not been helpful.9 Topical tretinoin has been reported to be effective through gradual transepidermal elimination of more superficial lesions.10 Our patient has reported subjective improvement using adapalene gel for a period of 6 months.

<table>
<thead>
<tr>
<th>Table 1. Comparison of Primary MMOC and Classic (Secondary) MMOC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary MMOC</td>
</tr>
<tr>
<td>Average age, y</td>
</tr>
<tr>
<td>History</td>
</tr>
<tr>
<td>Etiology</td>
</tr>
<tr>
<td>Incidence</td>
</tr>
</tbody>
</table>

*MMOC indicates multiple miliary osteoma cutis.
An interesting incidental histologic finding in our patient was the presence of collections of homogenous yellow-brown pigment in the upper dermis, directly above bony nodules (Figure 4). This represents exogenous ochronosis, so named for the yellow to light brown (ochre) microscopic granules. In this condition, topical hydroquinone (which must have been present in the over-the-counter preparations applied by our patient) causes localized inhibition of homogentisic acid oxidase and subsequent deposition of homogentisic acid polymers around collagen fibers in the dermis. Hydroquinone-induced exogenous ochronosis has been treated with the carbon dioxide laser in the past.11

Our case of primary MMOC is distinguished from classically described MMOC by the absence of any preexisting acne, neoplasm, or other conditions. The incidental finding of exogenous ochronosis was an interesting histologic clue that our patient had used hydroquinone-containing bleaching creams to try to treat the disorder.

REFERENCES