What’s Eating You? Ixodes Ticks

Roger Kapoor, MD, MBA; Dirk M. Elston, MD

Ixodes ticks can be recognized by their hard, inornate, dorsal scutum (shell); anterior-facing mouthparts; lack of eyes; and ventral anterior anal groove in the shape of an upside-down U (Figure 1). Female ticks have a small scutum, allowing the abdomen to massively expand during a blood meal (Figure 2).

Perhaps the best-known Ixodes tick is *Ixodes scapularis* (formerly *Ixodes dammini*). Also commonly referred to as the deer tick or black-legged tick, it is characterized by its brown teardrop-shaped body. However, when engorged, the female tick’s abdomen becomes filled with blood. The tick can be recognized by its large, soft, cream-colored, blood-filled abdomen (Figure 3).

In the United States, Ixodes ticks serve as vectors for 3 main diseases: Lyme disease (LD), babesiosis, and human granulocytic anaplasmosis (HGA) (formerly human granulocytic ehrlichiosis). The vector varies according to geography. For example, *I. scapularis* is the main vector of Lyme disease in the mid-Atlantic states, the Great Lakes region, and the northeastern United States, while *I. ricinus* (also known as the sheep tick) mainly is found in Europe. The major vector for Lyme disease in the western United States is *I. pacificus* (the California black-legged tick). Ixodes ticks are well-adapted to a variety of environments from coastal shorelines to New York City parks. Migrating birds may contribute to the wide geographic territory covered by the tick. Larval and nymphal stages of the tick attach to birds in the spring and summer, and robins have been shown to be competent hosts for the Lyme spirochete. Another common bird, the yellowthroat, also has been reported as a competent reservoir, though infectivity remains more robust in mice than in birds, and the white-footed mouse plays an important role in maintenance of the disease.6,7

Borrelia burgdorferi, a spirochete, is found in Europe and North America. The range of tick vectors appears wider in the southern states than in other parts of the country.8 *Borrelia burgdorferi* is one of the few bacteria with enzymes that utilize manganese instead of iron.9 Disease manifestations range from erythema migrans to arthritis, cardiac disease, and neurologic disease.

Babesiosis is a malarialike illness caused by *Babesia*, which is thought to be the second most common blood parasite of mammals.10,11 In the United States, the disease exists mostly in eastern Long Island, the barrier islands, Fire and Shelter Islands, and the islands off the coast of Massachusetts; it is occasionally referred to as “the malaria of the Northeast.”12 As Lyme disease and babesiosis are transmitted by the same vector, they may occur together.
Human granulocytic anaplasmosis is seen in the upper midwestern states and is characterized by increased serum hepatic transaminases, leukopenia, and thrombocytopenia in the context of an acute febrile illness. The disease is caused by Anaplasma phagocytophilum, an intracellular bacterium that is transmitted by Ixodes ticks and also can be transmitted by Dermacentor ticks. The range of all of these diseases is expanding and bird migrations contribute to widely separated geographic hot spots. In one rural New Jersey county, 55% of 100 adult I. scapularis ticks carried at least 1 disease (LD, 43%; babesiosis, 5%; and HGA, 17%). In fact, 10% of ticks carried more than 1 of the 3 diseases. Additionally, it has been shown that coinfection of LD, babesiosis, or HGA is common in individuals who are infected with 1 of the 3 diseases.

Another important and potentially fatal disease, tick paralysis, is primarily caused by Ixodes holocyclus in Australia and Dermacentor ticks in the United States. Neurotoxins in the tick’s saliva that seed the bloodstream during feeding are thought to be responsible for tick paralysis. Australian tick paralysis is an important cause of death among dogs. In the United States, the disease is commonly seen in humans and carries a mortality of greater than 10%, largely because Dermacentor ticks attach to the head and neck and are hidden by scalp hair. Ixodes ticks, however, attach to the upper trunk and proximal extremities and have been given the name shoulder tick. Once the tick is removed, the symptoms resolve, as the disease is induced by a tick toxin with a relatively short half-life.

Tick paralysis is treated by simple removal of the tick. Lyme disease is treated with doxycycline in adults and amoxicillin in children. Advanced disease may require intravenous ceftriaxone. Babesiosis is treated either with atovaquone plus azithromycin or clindamycin plus quinine. Human granulocytic anaplasmosis is treated with doxycycline.

The decision to administer antibiotic prophylaxis after tick bites remains controversial. Risk stratification is important and should be based on whether a patient is from an area that is endemic to LD, if a tick is heavily engorged (a sign of prolonged attachment), and accurate identification of I. scapularis. Currently there are no studies examining the cost-benefit ratio of antibiotic prophylaxis in situations in which all such variables are present. In the right setting, even single-dose doxycycline administered within 72 hours after an I. scapularis bite can reduce the risk for LD. However, we generally prefer to provide the patient with a prescription to be filled at the first sign of disease, as most patients will never develop manifestations of disease and will not require antibiotic treatment.

REFERENCES