Genetic screening for iron overload: No evidence of discrimination at 1 year

Few patients had insurance or employment problems after being screened for hereditary hemochromatosis and iron overload.

Abstract

Purpose This study measured the extent of insurance and employment problems associated with population screening for hereditary hemochromatosis and iron overload.

Methods 101,168 primary care patients from the US and Canada were screened for iron phenotypes and HFE genotypes associated with hemochromatosis. Those identified to be at risk (2253) were offered a clinical examination, which 1677 (74%) accepted, and the 1154 of these who responded to an initial questionnaire about psychosocial issues were surveyed 1 year later about whether they had experienced problems with insurance or employment that they attributed to hereditary hemochromatosis and iron overload.

Results 832 (72.1%) of the 1154 participants surveyed after 1 year responded to the second survey. Three (0.4%) had verified problems with insurance or employment that they believed were related to hereditary hemochromatosis and iron overload. Two had problems with life insurance, and one with long-term care insurance. All 3 had elevated iron levels but not a relevant HFE genotype. One of the life insurance problems was resolved; the second one was not serious. The participant who was denied long-term care insurance had other health conditions unrelated to hereditary hemochromatosis and iron overload that could have contributed to the denial. No problems were verified for health insurance or employment, or from any of the comparison group participants (controls and those with inconclusive screening results).

Conclusions The risk of insurance or employment problems 1 year after phenotype and genotype screening for hereditary hemochromatosis and iron overload is very low.

Social risks from genetic testing are a major public policy concern in medical genetics and genetics research.1-3 These concerns are focused mainly on health insurance, as insurers have an incentive to avoid those clients it will be costly for them to insure. This concern also applies to employers, who pay for most private health care in the US.

Since the beginnings of the Human Genome Project in 1990, legislation has been proposed to head off possible genetic discrimination. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) and the Genetic Information Nondiscrimination Act (GINA) of 2008 were both designed to protect genetic information from inappropriate use and disclosure to disqualify applicants from health insurance or employment. These laws are still under active debate, with many competing views on how effective they are at protecting against genetic discrimination.4,5

In this Article

Hereditary hemochromatosis: Early detection is key Page 830

Characteristics of those reporting insurance problems Page 832
Act of 1996 (HIPAA) prohibited most insurers from considering genetic risks as preexisting conditions. Since the 1990s, all but 2 states have passed laws that limit genetic discrimination in health insurance; 34 states ban or limit genetic discrimination by employers. In addition, a piece of federal legislation is pending. The Genetic Information Nondiscrimination Act, intended to prohibit health insurance and employment discrimination on the basis of genetic information, passed the House in April 2007 but, at press time, had not been voted on by the Senate. Because state laws usually do not apply to life or disability insurance, and their applicability to employment is inconsistent, the potential for discrimination problems is still of concern to patients with costly conditions that may be uncovered by genetic screening.

Hereditary hemochromatosis—early detection is key

Members of the health care community have expressed concern that genetic discrimination will hamper efforts to detect and mitigate hereditary hemochromatosis, a relatively common condition marked by iron overload, which can lead to irreversible organ damage and related health problems. Hereditary hemochromatosis is an autosomal recessive condition that typically is associated with 2 copies of the C282Y mutation in the HFE gene on chromosome 6, although the H63D HFE mutation is also associated with hereditary hemochromatosis in some cases. If detected early, health problems from iron overload can be prevented by periodic phlebotomy. Not surprisingly, then, there is public health interest in the screening and detection of hemochromatosis or iron overload before symptoms arise.

There are documented instances, however, of healthy people who experienced discrimination in insurance or employment based on having a phenotype or genotype associated with hereditary hemochromatosis. Alper and colleagues noted that “[i]n a general screening program of 100 million people . . . even if only 5% of these people [who screen positive for hereditary hemochromatosis] encounter discrimination, this amounts to approximately 28,000 people.” Alper’s speculation has not been tested because no large-scale studies of discrimination resulting from screening the general population have been conducted.

This study looks to identify possible social risks from genetic screening by surveying a large and diverse racial/ethnic primary care population participating in a study of iron overload and hereditary hemochromatosis in the US and Canada. We have sought to determine the number and types of problems associated with insurance and employment 1 year after screening and clinical examination for relevant hereditary hemochromatosis phenotypes and genotypes.

Methods

The data for this analysis come from the Hemochromatosis and Iron Overload Study of Hereditary Hemochromatosis (HStorm) Study Group. The HStorm Study Group is a collaborative, multi-institutional group of investigators who have agreed to share their data. The study sample consisted of patients with a definite or probable diagnosis of hereditary hemochromatosis who were recruited from primary care settings in the United States and Canada. The study was approved by the institutional review boards of all participating institutions.

Table 1

<table>
<thead>
<tr>
<th>Characteristics of all who responded to follow-up</th>
<th>CLINICAL EXAM</th>
<th>COMPARISON GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of follow-up surveys</td>
<td>1154</td>
<td>1742</td>
</tr>
<tr>
<td>Number (%) of respondents</td>
<td>832 (72.1)</td>
<td>1130 (64.9)</td>
</tr>
<tr>
<td>Age: mean (SD)</td>
<td>56.5 years (13.4)</td>
<td>53.2 years (13.6)</td>
</tr>
<tr>
<td>Gender: N (%)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>439 (52.8)</td>
<td>357 (31.7)</td>
</tr>
<tr>
<td>Female</td>
<td>393 (47.2)</td>
<td>768 (68.3)</td>
</tr>
<tr>
<td>Race: N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>461 (55.4)</td>
<td>788 (69.7)</td>
</tr>
<tr>
<td>Other</td>
<td>371 (44.6)</td>
<td>342 (30.3)</td>
</tr>
<tr>
<td>Language: N (%)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>728 (87.5)</td>
<td>1027 (91.4)</td>
</tr>
<tr>
<td>Other</td>
<td>104 (12.5)</td>
<td>97 (8.6)</td>
</tr>
<tr>
<td>Insurance coverage: N (%)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disability insurance</td>
<td>240 (31.1)</td>
<td>391 (37.1)</td>
</tr>
<tr>
<td>Life insurance</td>
<td>494 (62.2)</td>
<td>736 (67.8)</td>
</tr>
<tr>
<td>Health insurance</td>
<td>678 (83.4)</td>
<td>980 (88.7)</td>
</tr>
<tr>
<td>Employed: N (%)*</td>
<td>394 (55.7)</td>
<td>646 (65.5)</td>
</tr>
</tbody>
</table>

* Not all survey respondents answered these questions. Percent is based on those who answered.
load Screening (HEIRS) Study. A full
description of the study’s rationale, de-
sign, and methods has been published
elsewhere.17

Identifying the subjects
The research team screened a multi-

cultural/ethnic sample of 101,168 primary
care patients, 25 years of age and older,
over a 2-year period beginning in March
2001. We recruited participants in ap-

proximately equal numbers at 5 field
centers, 4 in the US and 1 in Canada. We
chose study sites and recruitment goals to
produce a sample with about 50% non-
Caucasians. A central laboratory assayed
blood samples for transferrin saturation,
serum ferritin, and \(HFE \) C282Y and
H63D mutations. A comprehensive clin-

ical evaluation was offered to all C282Y
homozygotes and to all non-C282Y ho-
mozygotes who met study thresholds for
elevated transferrin saturation and se-

rum ferritin iron measures.17

We identified a total of 2253 such
participants. Of these, 1677 (74%) par-
ticipated in the clinical exam, which as-

sessed body iron stores and attempted
to distinguish between primary and sec-

ondary causes of iron overload. Clinical
exam results were provided to the par-

ticipants—and, if they consented, to their
primary care providers. We then mailed
an extended survey to all 1677 partici-

pants assessing various psychological
and behavioral issues related to genetic
screening and testing; 1154 responded
(68.8%).

Follow-up 1 year later
One year after the clinical exam, we re-
surveyed these 1154 respondents and
asked additional questions about any
problems with employment or insur-

ance (health, life, or disability) in the
past year “related to hemochromatosis
or iron overload.” Participants who
had problems were contacted by tele-
phone for follow-up questions about
the nature and circumstances of the
problem.

For comparison with clinical exam
participants, we surveyed a stratified
random sample of 939 screening partici-

pants in a similar fashion 1 year follow-

ing screening. These participants were not
eligible for a clinical exam but they had
inconclusive screening results, indicating
possible elevated risk of hereditary hemo-

chromatosis/iron overload, such as \(HFE \)
genotypes other than C282Y homozy-
gosity, or lesser elevations of transferrin
saturation or serum ferritin.18 Also sur-

veyed at 1 year were 803 controls (469 of
whom had a clinical exam and 334 who
did not), who were randomly selected fol-

lowing the age distribution of the other
participants. All controls had no known
\(HFE \) genotypes associated with iron over-

load and had transferrin saturation and

serum ferritin values below study-defined
thresholds for risk of iron overload.

Results
Overall, 832 clinical exam participants
(72.1%) responded among the 1154
who were surveyed 1 year after their
exam. Sample characteristics are shown
in Table 1.

Few discrimination problems
were found
Twenty-four (2.8%) reported they had
1 or more problems with employment
or insurance that they believed were re-

lated to hereditary hemochromatosis/iron
overload. Researchers made follow-up
phone contact with 17 of these (70.8%),
but 7 were lost to follow-up. Only 3 of
these 17 participants verified problems
that were possibly related to the partici-

pation in the HEIRS Study. Among the
comparison group respondents (con-

trols and inconclusive screening results),
6 (0.5%) reported a problem with employ-

ment or insurance. However, after we made
contact with 5 of the 6 respondents, we
were unable to verify any of the 5 cases.

All 3 verified reports of problems
came from participants who received a
clinical exam based on elevated transfer-
rin saturation and serum ferritin levels, rather than based on their \textit{HFE} genotypes. There were no verified reports from any of the 153 newly identified C282Y homozygotes who responded (out of a total of 252 such participants in the HEIRS Study). Details of the 3 verified problems are shown in Table 2.

One person with primary iron overload was denied long-term care insurance. Two people with elevated transferrin saturation and serum ferritin levels of undetermined cause reported having problems with life insurance. One was charged an increased rate, and the second one was initially refused insurance but was later covered after a physician explained that serum iron measures had returned to normal. There were no verified reports of problems with health insurance or employment. (None of the 7 participants who reported problems but who were lost to further follow-up were newly identified C282Y homozygotes, nor did any have C282Y or H63D \textit{HFE} mutations.)

\section*{Discussion}

\textbf{Legal definitions and jurisdictions: Their role in discrimination}

In the present study, all 3 participants who reported problems received a clinical examination based on elevated blood iron measures (transferrin saturation and serum ferritin). We verified no problems among participants with any C282Y or H63D \textit{HFE} genotypes (including both homozygotes or heterozygotes). Therefore, under prevailing definitions, the reported problems do not appear to constitute “genetic discrimination.”15 Furthermore, we received no verified reports of problems with employment or health insurance, for which legal protections are much stronger than for other types of potential discrimination.19

Of note, though: None of our study jurisdictions had legal protections against genetic discrimination by life insurers or long-term-care insurers, and these are the 2 areas where our participants encountered problems. This suggests that existing legal protections may be somewhat

\begin{table}[h]
\centering
\caption{Characteristics of the 3 participants reporting insurance problems}
\begin{tabular}{|l|l|l|}
\hline
\textbf{Race} & \textbf{PARTICIPANT 1} & \textbf{PARTICIPANT 2} & \textbf{PARTICIPANT 3} \\
\hline
\textbf{Gender} & Caucasian, Asian, Pacific Islander (one each) & Caucasian, Asian, Pacific Islander (one each) & Caucasian, Asian, Pacific Islander (one each) \\
\hline
\textbf{Age} & over 64 & 45–64 & 45–64 \\
\hline
\textbf{Genotype} & normal (wild-type) \textit{HFE} & normal (wild-type) \textit{HFE} & normal (wild-type) \textit{HFE} \\
\hline
\textbf{Phenotype} & Elevated transferrin saturation (51%) and serum ferritin (917 mcg/L) & Elevated transferrin saturation (53%) and serum ferritin (740 mcg/L) & Elevated transferrin saturation (76%) and serum ferritin (2871 mcg/L) \\
\hline
\textbf{Other health problems} & Obese; spherocytosis; reported history of arrhythmia & Reported history of thalassemia trait & Reports 5 alcohol servings per day; evidence of liver abnormality \\
\hline
\textbf{Study classification} & Primary iron overload & Cause of iron overload indeterminate & Cause of iron overload indeterminate \\
\hline
\textbf{Reported problem} & Denied long-term-care insurance by 2 large companies & Obtained life insurance but at an increased rate & Initially denied life insurance, but successfully appealed with a physician’s letter stating no iron overload \\
\hline
\textbf{Notes} & Self-rated health status of 2 (“fair”) out of 5 (“excellent”) & Participant believes this was not due to participation in HEIRS Study, but was due to iron elevations that were identified by the study and reconfirmed by independent testing done for the insurance company & Reports that iron level returned to normal after ceasing to drink red wine \\
\hline
\end{tabular}
\end{table}
effective, although it is also consistent with the argument that such protections address potential problems that are rare or nonexistent.1

Examining the individual case reports (TABLE 2), insurance was denied outright in just one case, involving long-term care insurance, and that participant had health problems unrelated to iron overload that could have contributed to the denial. In the 2 life insurance cases, one person was insured with the help of a physician’s letter, and the other person obtained insurance with an increased premium.

Limitations of this study
Because this study had only a 1-year follow-up period, it provides no basis for determining the long-term prevalence of insurance or employment problems. However, it appears that after 1 year, the extent of these problems is very small. No verified problems were reported by newly identified C282Y homozygotes or by participants with any other C282Y or H63D HFE genotypes.

Our findings contrast with the 20% prevalence of discrimination among hemochromatosis patients reported by Shaheen et al.16 Their study, however, evaluated subjects who had been diagnosed in routine medical care to have hemochromatosis an average of 4.5 years before discrimination evaluation, and who were under treatment for iron overload.

Verification contacts in our study were made with those reporting a problem, which may have resulted in some underreporting among respondents. Also, we did not determine which participants sought or changed insurance during the study period, so we do not know the exposure rate to potential discrimination. Nevertheless, these findings provide some empirical basis for informing clinicians, researchers, patients, and Institution Review Boards that the risk of insurance or employment problems following genetic screening for hemochromatosis appears to be quite small. ■

Correspondence
Mark A. Hall, JD, Wake Forest University Medical School, Department of Public Health Sciences, 2000 W. 1st Street, Winston-Salem NC 27157-1063; mhall@wfubmc.edu

Funding/Support
This study is supported by contracts N01-HC05185 (University of Minnesota), N01-HC05186 (Howard University), N01-HC05188 (University of Alabama at Birmingham), N01-HC05189 (Kaiser Permanente Center for Health Research), N01-HC05190 (University of California, Irvine), N01-HC05191 (London Health Sciences Centre), and N01-HC05192 (Wake Forest University).

Additional support was provided by the Howard University General Clinical Research Center (GCRC) grant, M01-RR10284, and the UCSD/UCI Satellite GCRC grant, M01-RR00827 (University of California, Irvine), sponsored by the National Center for Research Resources, National Institutes of Health. Additional support was provided by the University of Alabama at Birmingham General Clinical Research Center (GCRC) grant M01-RR00032, Southern Iron Disorders Center, Howard University GCRC grant M01-RR10284, Howard University Research Scientist Award UH1-HL03679-05 from the National Heart, Lung, and Blood Institute and the Office of Research on Minority Health; and grant UC Irvine M01RR00827 from the General Clinical Research Centers Program of the National Center for Research Resources National Institutes of Health. These funding organizations participated in the study's design and conduct, and they approved publication of this paper, but they did not directly participate in the collection, management, analysis, or interpretation of the data or the preparation of this manuscript.

All authors had full access to all of the data in the study and they take responsibility for the integrity of the data and the accuracy of the data analysis. The HEIRS Study investigators are listed at www.heirs-study.org/PP_Policy.htm.

Disclosure
No potential conflict of interest relevant to this article was reported.

References