M A N U A L T R A N S L A T I O N

For Hidradenitis Suppurativa, Hair Removal Aids Tx

GRAPEVINE, TEX.—Hair removal by intense pulsed light is a useful adjunctive treatment for refractory hidradenitis suppurativa, based on experience with 10 patients at one center.

Five of the treated patients had improvement in their clinical status after 3-4 hair-removal treatments, with reduced or resolved lesions in the treated area. The remaining five patients had improvement after four to eight treatments, Dr. Agneta Troilius said at the annual meeting of the American Society of Lasers in Medicine and Surgery. The treatment also resulted in less scarring than usually occurs when hidradenitis suppurativa (HS) lesions resolve.

“Hair removal is one element of treatment” for a disease that affects as many as 4% of women, said Dr. Troilius, head of the laser and vascular anomaly section of the department of dermatology at Lund University in Malmö, Sweden.

The series included women aged 21-43 years with skin type II or III who had active HS for several years and had lesions that had affected their social lives.

Treatment was with an intense pulsed light (IPL) device, the Ellipse model made by Danish Dermatologic Development, using the hair applicator to deliver 645- to 950-nm light. Treatment was with a fluence of 17-19 J/cm², delivered as 20- to 40-microsecond pulses with a 1.5-microsecond delay. Treatments were at 1-month intervals. For pain control, treated areas were pretreated with a eutectic mixture of lidocaine and prilocaine (EMLA), and were also treated with contact cooling.

“One drawback to this treatment is that it is painful to treat in the affected areas,” Dr. Troilius said. Treatment of HS may be further refined by combining hair removal with photodynamic therapy or anti-inflammatory therapy with newly available biologic drugs.

Low-Energy Laser for Pseudofolliculitis Barbae Reduces Pain

GRAPEVINE, TEX.—Reduced laser energy can be effective and more acceptable to patients who are being treated for pseudofolliculitis barbae, based on results from a study with 11 evaluable patients.

“Lower fluences offer hair modulation without permanent hair reduction,” Dr. Rafael A. Schulze said at the annual meeting of the American Society for Laser Medicine and Surgery.

The hair follicles become smaller and weaker, and less prone to cause pseudofolliculitis barbae. Lower laser fluences also mean less concomitant heating and therefore less pain. Treatment with lower energy, at less than half the power usually used for hair removal, also means that the laser device can be smaller and potentially more portable, said Dr. Schulze, a dermatologist at Brooke Army Medical Center, Fort Sam Houston, Texas.

Pseudofolliculitis barbae, caused by the curling and growth of hair follicles into adjacent skin, occurs primarily in African Americans and causes inflammatory papules and pustules. It can also cause skin discoloration, hypertrophic or keloidal scarring, crusting, blistering, or scarring.

Standard treatments include topical steroids, chemical depilatories, electrolysis, and laser hair reduction.

Standard laser hair reduction is done with a high-fluence device, usually at a dose of 22-40 J/cm², which delivers a total power of 940 watts at an energy level of 24 J/cm². This treatment is painful in hair growth, and leaves darker skin and can cause pigmentation changes, scarring, or blistering. The laser device needed to deliver this energy is large and expensive, and at least two or three treatments are usually needed, at 4- to 6-week intervals.

This treatment is designed to permanently destroy hair follicles. Dr. Schulze and his associates examined the efficacy and safety of treatment with a 1064-nm Nd:YAG StarLux laser that delivered 12 J/cm² with a 10-mm spot size and 20- to 200-millisecond pulses, producing a total power dose of 390 watts.

The Lux handpiece contained a water-cooled sapphire contact cooling.

The series included women aged 21-45 years with skin type II or III who had active HS for several years and had lesions that had affected their social lives.

Treatment was with an intense pulsed light (IPL) device, the Ellipse model made by Danish Dermatologic Development, using the hair applicator to deliver 645- to 950-nm light. Treatment was with a fluence of 17-19 J/cm², delivered as 20- to 40-microsecond pulses with a 1.5-microsecond delay. Treatments were at 1-month intervals. For pain control, treated areas were pretreated with a eutectic mixture of lidocaine and prilocaine (EMLA), and were also treated with contact cooling.

“One drawback to this treatment is that it is painful to treat in the affected areas,” Dr. Troilius said. Treatment of HS may be further refined by combining hair removal with photodynamic therapy or anti-inflammatory therapy with newly available biologic drugs.

Low-Energy Laser for Pseudofolliculitis Barbae Reduces Pain

GRAPEVINE, TEX.—Reduced laser energy can be effective and more acceptable to patients who are being treated for pseudofolliculitis barbae, based on results from a study with 11 evaluable patients.

“Lower fluences offer hair modulation without permanent hair reduction,” Dr. Rafael A. Schulze said at the annual meeting of the American Society for Laser Medicine and Surgery.

The hair follicles become smaller and weaker, and less prone to cause pseudofolliculitis barbae. Lower laser fluences also mean less concomitant heating and therefore less pain. Treatment with lower energy, at less than half the power usually used for hair removal, also means that the laser device can be smaller and potentially more portable, said Dr. Schulze, a dermatologist at Brooke Army Medical Center, Fort Sam Houston, Texas.

Pseudofolliculitis barbae, caused by the curling and growth of hair follicles into adjacent skin, occurs primarily in African Americans and causes inflammatory papules and pustules. It can also cause skin discoloration, hypertrophic or keloidal scarring, crusting, blistering, or scarring.

Standard treatments include topical steroids, chemical depilatories, electrolysis, and laser hair reduction.

Standard laser hair reduction is done with a high-fluence device, usually at a dose of 22-40 J/cm², which delivers a total power of 940 watts at an energy level of 24 J/cm². This treatment is painful in hair growth, and leaves darker skin and can cause pigmentation changes, scarring, or blistering. The laser device needed to deliver this energy is large and expensive, and at least two or three treatments are usually needed, at 4- to 6-week intervals.

This treatment is designed to permanently destroy hair follicles. Dr. Schulze and his associates examined the efficacy and safety of treatment with a 1064-nm Nd:YAG StarLux laser that delivered 12 J/cm² with a 10-mm spot size and 20- to 200-millisecond pulses, producing a total power dose of 390 watts.

The Lux handpiece contained a water-cooled sapphire contact cooling.

The series included women aged 21-45 years with skin type II or III who had active HS for several years and had lesions that had affected their social lives.

Treatment was with an intense pulsed light (IPL) device, the Ellipse model made by Danish Dermatologic Development, using the hair applicator to deliver 645- to 950-nm light. Treatment was with a fluence of 17-19 J/cm², delivered as 20- to 40-microsecond pulses with a 1.5-microsecond delay. Treatments were at 1-month intervals. For pain control, treated areas were pretreated with a eutectic mixture of lidocaine and prilocaine (EMLA), and were also treated with contact cooling.

“One drawback to this treatment is that it is painful to treat in the affected areas,” Dr. Troilius said. Treatment of HS may be further refined by combining hair removal with photodynamic therapy or anti-inflammatory therapy with newly available biologic drugs.