Emerging evidence suggests that we shouldn’t be prescribing prophylactic antibiotics for every child with recurrent urinary tract infection, even when vesicoureteral reflux is present. Just as the pendulum has swung over the last few decades in favor of widespread use of antibiotics with acute otitis media toward selective use of “watchful waiting,” data on recurrent urinary tract infection (UTI) suggest that children with lower grades of reflux may not benefit from long-term prophylactic antibiotics. These children may in fact be disadvantaged by prophylaxis’s selecting for increased antimicrobial resistance. Therefore, even when we decide to use antimicrobial prophylaxis in selected children with both recurrent UTI and the first recurrent UTI, even when the children were stratified by age, race, sex, or VUR grade.

Importantly, despite the lack of effect on time to recurrent UTI, prophylaxis was associated with a 7.5-fold increased likelihood of a resistant pathogen causing the recurrence. In the overall group of 611 children with UTI, trimethoprim-sulfamethoxazole was prescribed for 61%, amoxicillin for 29%, nitrofurantoin for 7%, and other antimicrobials including first-generation cephalosporins for the other 3%. Although the investigators didn’t report which antibiotics were used in the 83 children with recurrent UTI, they did note that none of the 9 children who received nitrofurantoin had a recurrence.

This study follows last year’s publication of a Cochrane review comprising data for 406 children from five randomized studies in which antibiotic prophylaxis was compared with placebo or no treatment (Cochrane Database Syst. Rev. 2006;3:CD001534). The results were not conclusive. Antibiotics were found to reduce the risk of repeated positive urine culture (relative risk 0.44), but there was no information about rates of symptomatic recurrent infection or long-term renal sequelae. In one study, nitrofurantoin was more effective than trimethoprim in preventing recurrent UTI over a 6-month period (RR 0.48), but patients were more likely to discontinue nitrofurantoin because of side effects. In another study, cefixime was more effective than nitrofurantoin in preventing recurrent UTI during the first 6 months (RR 0.74), but adverse reactions were more common with cefixime than with nitrofurantoin (63% vs. 26%).

Historically, the use of antimicrobial prophylaxis in all children with UTIs—in the 1970s—was based on studies that included asymptomatic bacteriuria as well as the more important symptomatic UTIs. The 70s data suggested that prophylaxis prevented recurrent positive urine cultures, many of which were from asymptomatic children. There also were insufficient data to prove that prophylaxis prevented renal scarring or the need for kidney transplantation. People had presumed that asymptomatic bacteriuria was as important as symptomatic UTI in leading to long-term kidney issues, but there was no definitive evidence for this. Later imaging results indicated that VUR was associated with more frequent UTI, although we still didn’t have proof of their association with long-term renal damage. Recent data indicate that lower grades of reflux are not statistically associated with long-term kidney injury or renal scarring, and now we see that the first recurrent UTI occurs just as soon, whether children are on or off prophylaxis. At the same time, we are increasingly concerned about antimicrobial resistance. The drugs typically used for prophylaxis—amoxicillin, trimethoprim-sulfamethoxazole, and first-generation cephalosporins—have become less and less active in vitro against the most common UTI pathogen, Escherichia coli.

Until we get more definitive data, I think that we can be more selective in deciding which patients with a first UTI should receive antimicrobial prophylaxis—without exposing these children to extra risks. My personal bias is to limit prophylaxis to those in whom imaging shows either grades 4 or 5 VUR or other obstruc- tive anatomic abnormalities. For children with lower grades of reflux, I would simply observe them for a recurrence pattern, keeping in mind that some may show more frequent recurrences than expected. This subset might need urologic referral to look for more subtle problems that can benefit from intervention. Given what we know about the risk of antimicrobial resistance, my advice would be to avoid 365 days per year of antibiotic exposure (prophylaxis) with low-grade VUR unless there were more than three UTI recurrences per year.

For children with high degrees of reflux (4 and 5), in vitro resistance data and hints from recent studies suggest that nitrofurantoin may currently be our best bet for prophylaxis. The micronized formulation (Macrubid) appears to have the fewest gastrointestinal side effects, so I’d use it as a first choice. If patients don’t tolerate nitrofurantoin, we should look at local resistance patterns, or perhaps a first-generation cephalosporin might be the next best choice. It’s possible that broader-spectrum antimicrobials may work well in certain patients, but we don’t have enough data on the prevalence of mechanisms of resistance, and tendencies to induce resistance, to comfortably use them empirically.

And, of course, we need to remember that when we do decide to prescribe long-term daily antibiotics, we can’t assume for a minute that adherence will be complete. As the old saying goes, “Two-thirds of patients take two-thirds of the antibiotic—two-thirds of the days prescribed.” One thing for which we have definitive proof is that nobody takes a drug every single day.

Community-Acquired MRSA, Spider Bites Present Similarly

Dr. Harrison is professor of pediatrics and pediatric infectious diseases at Children’s Mercy Hospitals and Clinics, Kansas City, Mo. He has no ties to P&G Pharmaceuticals, manufacturer of Macrubid (and Macrolent). Comments and questions may be sent to Dr. Harrison at our editorial offices at phnews@elevier.com.