Diabetes Screening May Lower CV Event Risk

BY MIRIAM E. TUCKER
FROM THE ANNUAL MEETING OF THE EUROPEAN SOCIETY OF CARDIOLOGY FOR THE STUDY OF DIABETES

STOCKHOLM – Screening for prevalent type 2 diabetes in primary care identified people at high modifiable cardiovascular risk, but subsequent intensive multifactorial treatment improved cardiovascular outcomes by only an insignificant 17% over routine care in a large 5-year randomized study.

Nevertheless, “when compared to no screening and no diabetes treatment, screening and either early routine diabetes care or intensive multifactorial intervention are likely to reduce cardiovascular morbidity and mortality by nearly half,” Dr. William H. Herman, who was not involved in the research, commented at the annual meeting of the European Association for the Study of Diabetes.

Indeed, the difference between the intensive intervention and routine treatment groups is not the main point of the ADDITION study, said Dr. Herman, professor of medicine at the University of Michigan, Ann Arbor, who served as the independent commentator on the study.

“There is no evidence that cancer risk is increased when very low cholesterol concentrations are achieved with high-dose statins,” Jonathan Emberson, Ph.D., said at the congress.

“There is no suggestion of an emerging risk of any hazard with longer duration of treatment, at least within the period of about 5 years. There is no evidence that low cholesterol increases cancer risk at any site or in any group of individuals,” I think the question about statins has now probably been answered as well as it can be from the randomized trials,” said Dr. Emberson, a statistician in the clinical trial service unit at the University of Oxford (England).

Follow-up for the patients in the trials ran 5-6 years, producing “extremely reassuring” results for long-term safety, he said in an interview.

Concern that very low serum cholesterol levels – hence statin therapy – might boost cancer incidence has not had a big impact on statin use. But every now and then over the past 20 years, “a trial threw out a random result that raised a new hypothesis,” he said. For example, in 1996, the CARE (Cholesterol and Recurrent Events) trial, which compared 40 mg pravastatin with placebo for secondary prevention in more than 4,000 patients followed for an average of 5 years, showed 12 cases of breast cancer during follow-up in the pravastatin arm, compared with one case in the placebo arm, a statistically significant difference (N. Engl. J. Med. 1996;335;1001-9).

“Random things happen all the time,” Dr. Emberson noted. The CARE results showed “a significant excess, but what’s important is, it wasn’t supported by data from all the other statin trials. Occasionally, trials throw up hypotheses that can be tested. We attempted to systematically test all those hypotheses using all of the data.”

The 26 statin trials in the meta-analysis included all those that were published through the end of 2009 with at least 1,000 patients followed for at least 2 years. In all, 21 trials compared a statin with placebo, and 5 compared a low statin dose with a higher statin dose. The 170,000 patients in all 26 trials developed 10,000 cases of cancer during follow-up, with more than 3,500 cancer deaths.

Meta-Analysis Finds No Evidence of Statin-Cancer Link

BY MITCHEL L. ZOLER
FROM THE ANNUAL CONGRESS OF THE EUROPEAN SOCIETY OF CARDIOLOGY

STOCKHOLM – Data from 170,000 patients in 26 randomized trials may finally dismiss the idea that low cholesterol levels during statin therapy play a role in causing cancer.

“There is no suggestion of an emerging risk of any hazard with longer duration of treatment, at least within the period of about 5 years. There is no evidence that low cholesterol increases cancer risk at any site or in any group of individuals,” I think the question about statins has now probably been answered as well as it can be from the randomized trials,” said Dr. Emberson, a statistician in the clinical trial service unit at the University of Oxford (England).

Follow-up for the patients in the trials ran 5-6 years, producing “extremely reassuring” results for long-term safety, he said in an interview.

Concern that very low serum cholesterol levels – hence statin therapy – might boost cancer incidence has not had a big impact on statin use. But every now and then over the past 20 years, “a trial threw out a random result that raised a new hypothesis,” he said. For example, in 1996, the CARE (Cholesterol and Recurrent Events) trial, which compared 40 mg pravastatin with placebo for secondary prevention in more than 4,000 patients followed for an average of 5 years, showed 12 cases of breast cancer during follow-up in the pravastatin arm, compared with one case in the placebo arm, a statistically significant difference (N. Engl. J. Med. 1996;335;1001-9).

“Random things happen all the time,” Dr. Emberson noted. The CARE results showed “a significant excess, but what’s important is, it wasn’t supported by data from all the other statin trials. Occasionally, trials throw up hypotheses that can be tested. We attempted to systematically test all those hypotheses using all of the data.”

The 26 statin trials in the meta-analysis included all those that were published through the end of 2009 with at least 1,000 patients followed for at least 2 years. In all, 21 trials compared a statin with placebo, and 5 compared a low statin dose with a higher statin dose. The 170,000 patients in all 26 trials developed 10,000 cases of cancer during follow-up, with more than 3,500 cancer deaths.

Statin treatment gave no hint of an influence on cancer rates in all 26 studies together, nor separately in the 21 studies in which it was compared with placebo, nor in the 5 in which high dose was compared with low dose. The results showed no sign of cancer increase when treated patients started with low serum levels of LDL cholesterol. There was no cancer impact with longer duration of statin use, no impact for various statins, no difference by age or by sex. The analysis showed no suggestion of an increased risk in the elderly. And no increased risk appeared for gastrointestinal cancers, another cancer type that gave a signal for higher risk in other analyses.

“The value of our analysis is that we were able to systematically test all of the hypotheses that had been raised in a much larger data set than has previously been possible, and the results are very reassuring for the millions of patients who take statins in the United States,” Dr. Emberson said.

"There is no evidence that cancer risk is increased when very low cholesterol concentrations are achieved with high-dose statins," Jonathan Emberson, Ph.D., said at the congress.

"There is no suggestion of an emerging risk of any hazard with longer duration of treatment, at least within a period of about 5 years. There is no evidence that low cholesterol increases cancer risk at any site or in any group of individuals," I think the question about statins has now probably been answered as well as it can be from the randomized trials," said Dr. Emberson, a statistician in the clinical trial service unit at the University of Oxford (England).

Follow-up for the patients in the trials ran 5-6 years, producing “extremely reassuring” results for long-term safety, he said in an interview.

Concern that very low serum cholesterol levels – hence statin therapy – might boost cancer incidence has not had a big impact on statin use. But every now and then over the past 20 years, “a trial threw out a random result that raised a new hypothesis,” he said. For example, in 1996, the CARE (Cholesterol and Recurrent Events) trial, which compared 40 mg pravastatin with placebo for secondary prevention in more than 4,000 patients followed for an average of 5 years, showed 12 cases of breast cancer during follow-up in the pravastatin arm, compared with one case in the placebo arm, a statistically significant difference (N. Engl. J. Med. 1996;335;1001-9).

“Random things happen all the time,” Dr. Emberson noted. The CARE results showed “a significant excess, but what’s important is, it wasn’t supported by data from all the other statin trials. Occasionally, trials throw up hypotheses that can be tested. We attempted to systematically test all those hypotheses using all of the data.”

The 26 statin trials in the meta-analysis included all those that were published through the end of 2009 with at least 1,000 patients followed for at least 2 years. In all, 21 trials compared a statin with placebo, and 5 compared a low statin dose with a higher statin dose. The 170,000 patients in all 26 trials developed 10,000 cases of cancer during follow-up, with more than 3,500 cancer deaths.

Statin treatment gave no hint of an influence on cancer rates in all 26 studies together, nor separately in the 21 studies in which it was compared with placebo, nor in the 5 in which high dose was compared with low dose. The results showed no sign of cancer increase when treated patients started with low serum levels of LDL cholesterol. There was no cancer impact with longer duration of statin use, no impact for various statins, no difference by age or by sex. The analysis showed no suggestion of an increased risk in the elderly. And no increased risk appeared for gastrointestinal cancers, another cancer type that gave a signal for higher risk in other analyses.

“The value of our analysis is that we were able to systematically test all of the hypotheses that had been raised in a much larger data set than has previously been possible, and the results are very reassuring for the millions of patients who take statins in the United States,” Dr. Emberson said.