Dr. Bundy suggested that ADHD medications themselves may have properties predisposing them to certain types of errors. He described an ADHD “medication bing” that includes an array of dosages and formulations, including Adderall XR (5, 10, 15, 20, 25, 30 mg); Adderall (5, 7.5, 10, 12.5, 15, 20, 30 mg); methylphenidate (Concerta) (18, 27, 36, 54 mg); and three formulations of methylphenidate (Ritalin), including Ritalin SR and Ritalin LA.

Although few errors involving ADHD medications appear to be harmful to patients’ health, the impact on school performance and behavior may be important, said Dr. Bundy, who disclosed no related conflicts of interest. Moreover, pediatric ADHD outpatient medications are associated with 3.5 million ambulatory visits annually in children under 15 years of age—second only to asthma as a cause of ambulatory care visits for a chronic disease.

Dispensing errors are common, and there are no checks and balances afterward to identify errors, the investigators found. Efforts aimed at reducing ADHD medication errors must include not only physician-based systems, but also dispensing/ pharmacy systems, Dr. Bundy said.

Dispensing errors accounted for more than half of the reported errors (218 or 66%), whereas nearly one-quarter (84 or 23%) occurred during prescribing, and more than 1 in 10 (45 or 12%) during administration. The most common type of error was improper dose or quantity (131 or 36%) followed by wrong dosage form (51 or 14%), prescribing error (43 or 12%), omission error (39 or 11%), and wrong patient (32 or 9%).

Limitations of the study included the lack of a denominator, which made an incidence calculation impossible; no verification of report accuracy or completeness; underreporting and reporting bias; a non-representative sample; and a lack of information from patients.

“ADHD-related medication error incidence is significant... so the importance of judicious use of ADHD medications is magnified,” Dr. Bundy said in an interview.

Antidepressant ‘Poop Out’ May Be Placebo Effect

SAN DIEGO — If a patient with depression comes to the office and says that his antidepressant has stopped working, the drug you gave him probably was never working at all, Dr. Mark Zimmerman said at the annual meeting of the American Psychiatric Association.

That patient probably had a placebo response, said Dr. Zimmerman, director of outpatient psychiatric services at Rhode Island Hospital, Providence.

Dr. Zimmerman said he was interested in why antidepressants seem to “poop out” when patients take them long term, and so he conducted a meta-analysis of continuation studies.

He identified four extension studies—the only type of continuation study that can be analyzed for its placebo effect-related relapse; in these studies, the patients were treated for their acute depression with a selective serotonin reuptake inhibitor for 6-8 weeks, followed by a continuation phase in which patients continued to take their drug for up to an additional year.

Dr. Zimmerman pooled the studies’ data and used a method first described in 1993 to estimate the percentage of cases that can be attributed to a loss of placebo response (Am. J. Psychiatry 1993;150:562-5).

Using that formula, he estimated that 84% of the patients who relapsed during the continuation period were most probably patients whose response was a placebo response.

“The bottom line is that, overwhelmingly, relapse in studies occurs in people who are placebo responders,” he said. “It is not due to receptor down regulation or up regulation.”

Dr. Zimmerman also noted that continuation studies are not clinical practice, and that in clinical practice placebo response rates are probably higher than the 24%-30% rate described in trials because patients have higher expectations than those enrolled in studies.

“More of our patients are placebo responders than in clinical trials, and perhaps we shouldn’t attribute as much of their gain to the particular molecule they are taking,” he said.

—Timothy F. Kim