Fatty Liver Disease Common in U.S. Adolescents

BY MITCHELL L. ZOLER
Philadelphia Bureau

NEW ORLEANS — The prevalence of nonalcoholic fatty liver disease among children aged 9-19 years may be about 17%, far higher than previous estimates, according to a study presented at the annual Digestive Disease Week.

With an estimated 9 million obese children in the United States today, “that’s a lot of kids walking around with liver disease that no one knows about,” said Dr. Jeffrey B. Schwimmer, M.D., director of the fatty liver clinic at Children’s Hospital and Health Center, San Diego. “Liver disease is the most common complication of obesity in children.”

Until now, overall prevalence estimates for NAFLD in children have ranged from about 2% to 8%. To get a more definitive handle on the scope of the problem, Dr. Schwimmer and his associates reviewed liver biopsy samples taken from children aged 2-19 who died suddenly in San Diego County between January 1, 2000, and July 1, 2005. Causes of death included accidents, homicides, and suicides. The decedents’ racial makeup was 42% white, 36% Hispanic, 8% African American, 8% Asian, and 4% other. The weight breakdown was 5% underweight (defined as 15th percentile or lower), 58% normal weight (16th-84th percentile), and 37% obese (95th percentile or higher).

The liver biopsies were read by a hepatopathologist who was blinded to the study. NAFLD was defined as macrovesicular steatosis involving at least 5% of hepatocytes. Decedents were excluded from analysis if their necropsy was done more than 48 hours after time of death. NAFLD was not found in any child younger than 9 years. Of the 278 children aged 9-19 with necropsy samples, 238 had liver available for review. The average age of the children in this group was 17 years (range: 10.6-17.6) years were boys. NAFLD was 3.3-fold more common in boys than in girls in an adjusted analysis, and prevalence increased with age. In children aged 9-15, the prevalence was about 10%, but it rose to 18% in those aged 17-19 years. The most common cause of death was an asthma attack in Hispanics (22%), followed by whales (15%), African Americans (8%) and Asians (3%). The higher rate in Hispanics persisted even when rates were also adjusted for obesity and other confounders, indicating that race and ethnicity had an independent role in the development of fatty liver disease.

When stratified by weight, the prevalence of NAFLD liver disease was 8% in the underweight kids, 7% in those with normal weight, 18% in the overweight children, and 45% in the obese children.

Diagnosing NAFLD in children in everyday practice can be a challenge for a number of reasons. In a small talk at the meeting, Dr. Schwimmer and his associates presented their findings from 100 children, 2-18 years of age, who presented to his clinic during 1997-2003 with biopsy-proven NAFLD.

"Most of the children were asymptomatic; about a third had vague abdominal pain," he said.

A physical examination can reveal hepatomegaly in most children with NAFLD, but palpating the liver in an obese child can be difficult. Another physical finding is a tender edge on the liver, but again, detecting this requires experience and a thorough examination.

Most children with NAFLD will have an abnormally high level of transaminases—alanine aminotransferase, aspartate aminotransferase, or gamma glutamyltransferase. But physicians have to be careful about what their laboratory is flagging as being above normal for these enzymes. Because NAFLD is so common, upper limits of normal have crept up, Dr. Schwimmer said. Some laboratories are calling an ALT level of 75 U/L normal, which can be the level in children with cirrhosis. ‘‘Anything above 40 U/L is likely a marker of disease,’’ he said.

Another flag for NAFLD in obese children is acanthosis nigricans. The 100-patient series also showed that the form of nonalcoholic steatohepatitis (NAS) that often appears in liver biopsies of children with NAFLD is distinct from the type of NAS that is typical in adults. Adult-type NAS, named type 1 by Dr. Schwimmer and his associates, is a steatohepatitis with ballooning degeneration and/or perisinusoidal fibrosis with or without lobular inflammation and without portal inflammation or fibrosis.

Pediatric-type NAS, named type 2, features steatosis with portal inflammation and/or fibrosis without perisinusoidal fibrosis or lobular inflammation.

In the 100 patients reviewed, type 2 NAS was seen in 41 patients, and type 1 was found in 12. All of the biopsies from the seven patients who studied had advanced liver fibrosis or cirrhosis had type 2 disease. Type 2 NAS was also associated with male gender, greater adiposity, and nonwhite race, which may explain why the histologic findings in pediatric NAFLD often differed from adult NAS. The differences between types 1 and 2 may correlate with differences in pathogenesis, natural history, and treatment response, Dr. Schwimmer said.

DATA WATCH

More Comorbidities Found in Obese Patients

<table>
<thead>
<tr>
<th>Comorbidity</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obese Obese</td>
<td>n = 1,715</td>
</tr>
<tr>
<td>General Population</td>
<td>n = 12,370</td>
</tr>
</tbody>
</table>

Note: Based on a nationwide survey of adults conducted June 10-22, 2004.

Source: Harris Interactive.

BRIEF SUMMARY

For Informational/Relief Only

DESCRIPTION

Adenoscan is an enzymatic reaction occurring in all cells of the body. It is metabolized to thymidine and released into the bloodstream.

INDICATIONS AND USAGE

Adenoscan is indicated in an initial test of myocardial perfusion defects in patient undergoing pharmacologic stress testing.

PRECAUTIONS

Drug Interactions

Adenoscan should be withheld for at least five half-lives prior to the use of Adenoscan. In the presence of dipyridamole has not been systematically evaluated. Whenever possible, drugs that might inhibit or augment the effects of Adenoscan should be withheld for at least five half-lives prior to the use of Adenoscan. In the presence of dipyridamole has not been systematically evaluated. Whenever possible, drugs that might inhibit or augment the effects of Adenoscan should be withheld for at least five half-lives prior to the use of Adenoscan.

WARNINGS

Adenoscan should be withheld for at least five half-lives prior to the use of Adenoscan. In the presence of dipyridamole has not been systematically evaluated. Whenever possible, drugs that might inhibit or augment the effects of Adenoscan should be withheld for at least five half-lives prior to the use of Adenoscan. In the presence of dipyridamole has not been systematically evaluated. Whenever possible, drugs that might inhibit or augment the effects of Adenoscan should be withheld for at least five half-lives prior to the use of Adenoscan.

ADVERSE REACTIONS

The most common adverse reactions of at least 2% were reported with Adenoscan. The most common adverse reaction of at least 2% was reported with Adenoscan. The most common adverse reaction of at least 2% was reported with Adenoscan. The most common adverse reaction of at least 2% was reported with Adenoscan.