Current therapeutic options in hairy cell leukemia

Evgeny Mikler, PA-C, and John Mascarenhas, MD

Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York

Hair cell leukemia (HCL) was initially described in 1958 as leukemic reticuloendotheliosis. The disorder is rare and accounts for 2% of all adult leukemia cases in the United States. The incidence rate is 0.3 cases per 100,000 population per year, with about 600 individuals diagnosed annually. Men are affected 4 times more frequently than are women. The incidence is higher in whites than in blacks. The average age of diagnosis is 52 years. The exact etiology remains unknown.

Diagnosis of HCL

Clinical presentation

About 25% of individuals with HCL have no signs or symptoms at the initial presentation. Most patients experience fatigue and generalized weakness. They may also complain of unexplained weight loss, pain in the left upper quadrant, recurrent infections, and bruising. Physical examination may reveal hepatosplenomegaly and lymphadenopathy. Dermatologic manifestations are common and include ecchymosis, purpura, zoster rash, cellulitis, abscess, pyoderma, and dermatophytosis.

Laboratory findings

Anemia, leukopenia, monocytopenia, and neutropenia are the most frequent hematologic abnormalities seen in patients with HCL. Other laboratory findings may include thrombocytopenia and hypocholesterolemia. Autoimmune hemolytic anemia (AIHA) and idiopathic thrombocytopenia purpura (ITP) can also be observed. The peripheral blood smear demonstrates atypical lymphocytes with hair-like projections. An attempted bone marrow aspiration that is unsuccessful – as is often the case in HCL – is called a “dry tap.” Flow cytometry of the peripheral blood or the bone marrow may reveal cells that are positive for certain clusters of differentiation (specifically, CD11c, CD19, CD20, CD22, CD25, CD103, and CD123) as well as surface-membrane immunoglobulin free light chains (κ or λ) but are negative for CD5, CD21, and CD23. Additional markers – such as cyclin D1, annexin A1, tartrate-resistant acid phosphatase (TRAP), the monoclonal antibody DBA.44, and the BRAF V600E mutation – are usually expressed by the malignant cell population. The bone marrow biopsy is also remarkable for varying degrees of reticulin and collagen fibrosis.

Differential diagnosis

The differential diagnosis of HCL should include chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), prolymphocytic leukemia (PLL), splenic marginal zone lymphoma (SMZL), HCL-variant, myelodysplastic syndrome (MDS), and primary myelofibrosis (PMF).

Prognostic factors

Prognostic factors can assist in identifying patients with advanced disease. These factors are based on age, hemoglobin level, and organomegaly. Poor prognostic characteristics include advanced age, a hemoglobin level < 12 gm/dL, and the presence of splenomegaly.
Treatment in HCL

Asymptomatic patients are usually observed because there is no proven clinical benefit in early treatment. Reasons to begin therapy would include the presence of severe fatigue and weakness that interfere with the patient’s quality of life; symptomatic splenomegaly or lymphadenopathy; signs of bone marrow failure (ie, a hemoglobin level < 10 g/dL, a platelet count < 100,000/μL and an absolute neutrophil count < 1,000/μL and the occurrence of frequent infections. Pharmacologic therapy consists of purine analogs, interferon, and monoclonal antibodies. Other treatment options may include splenectomy and splenic irradiation.

Splenectomy

Historically, splenectomy was the only available treatment option for patients with HCL and symptomatic splenomegaly; it relieved symptoms related to an enlarged spleen and temporarily improved cytopenias. However, splenectomy is associated with a risk of hemorrhage, which is the second most common cause of death in patients with HCL, thus making it challenging to perform, especially in older patients. Currently, splenectomy is reserved for patients with primary splenic HCL who are refractory to medical therapy, for patients with splenic rupture, or for diagnostic purposes.

Interferon

The first reports of significant clinical activity in HCL via interferon-alpha (IFN-α) were made in 1984; these investigators reported on 7 patients who had a 43% complete remission (CR) and a partial remission (PR) of 57%. In a small, randomized, 1992 study comparing IFN-α vs splenectomy, patients who received IFN-α showed higher responses and had longer median times both to response and to treatment failure. IFN-α became the first medical therapy that demonstrated clinical benefit over splenectomy, producing mostly partial responses. This study showed that medical therapy could be successfully given to patients with HCL-related cytopenias.

In 1995, researchers reported the long-term follow-up of 55 previously untreated HCL patients after 1 year of treatment with IFN-α. The overall response rate (ORR) was 73%, with a CR of 49% and a PR of 24%; in all, 83% (46 patients) remained alive at 6 years. Currently, IFN-α is used for HCL patients with relapsed and/or refractory disease after purine analogs.

Purine analogs

Clinical trials evaluating purine analogs in HCL, including pentostatin and cladribine, have demonstrated improved tolerability and ORR; reduction in size of spleen and lymph nodes; and longer time to progression.

The first report of treating HCL with pentostatin was published in 1984, when 2 patients with advanced HCL both achieved a CR with the drug. In 1995, a large intergroup trial compared pentostatin vs IFN-α; patients who received pentostatin showed a significantly higher ORR (79% vs 38%) and CR (76% vs 11%). Relapse-free survival (RFS) was also higher for those in the pentostatin group, but overall survival (OS) was not significantly different between the 2 therapies.

Currently, cladribine is considered to be the treatment of choice because of its short duration of therapy, favorable adverse-effect profile, durable response rates, and improvement in disease-free survival. In 1990, a single-institution trial of 12 patients who were treated with 1 cycle of cladribine showed an ORR of 100% and a CR of 92%. In addition, other reports of treatment-naive patients with HCL have shown ORRs ranging between 98% and 100%, with CRs ranging between 76% and 95% (Table). Relapsed disease after the initial therapy can be either retreated with another course of cladribine or switched to pentostatin.

Monoclonal antibodies

Monoclonal antibodies have been evaluated in the treatment of HCL in a number of small clinical trials.

Rituximab is a chimeric, murine monoclonal antibody against CD20 and an active agent in treating B-cell lymphoid disorders. The first report of successful therapy with rituximab in a patient with HCL that was refractory to cladribine was published in 1999. A year later, a case study reported a CR with rituximab therapy in an HCL patient. In 2001, a report of 11 patients who were treated with rituximab as a single agent noted that 6 of them achieved a CR and 1 achieved a PR, with an ORR of 64%.
patients who were treated with weekly rituximab therapy showed an ORR of 80% and a CR of 53%.41 A phase 2 trial of rituximab in patients who previously failed cladribine therapy showed an ORR of 24% and a CR of 12%.44 Monotherapy with rituximab demonstrated good tolerability, with ORRs ranging between 24% and 80%, and CRs between 12% and 53%.52-54

Rituximab also has been evaluated in combination with purine analogs in the relapsed/refractory setting, and was shown to be effective in eradicating minimally residual disease that can be detected by immunophenotyping by flow cytometry, immunohistochemistry, and polymerase chain reaction.46,47 The lack of data from large, prospective, randomized trials precludes the routine use of this agent in the upfront setting.

Alemtuzumab is a monoclonal antibody that is approved by the US Food and Drug Administration for the treatment of CLL. It is a humanized, anti-CD52 antibody that could be used in the relapsed setting.48,49 However, additional trials are needed to formally establish it as a therapeutic option in HCL.

The role of monoclonal antibodies in the treatment of HCL remains largely undefined because there have been no large prospective studies to support their use; for patients in the relapsed/refractory setting, enrollment in clinical trials that are evaluating these biologics is most appropriate.

Radiation therapy
Radiation therapy has been used largely for the treatment of skeleton-related complications associated with HCL, such as lytic lesions.21 Splenic irradiation is rarely used as a treatment modality, mostly because of the availability of other effective treatment options, as previously mentioned in this review. Currently, radiation is reserved for patients who have symptomatic splenomegaly and are not good candidates for other therapeutic options.50

Novel therapies
There are several novel therapies in the early phases of development. They include anti-CD22 (BL-22) and anti-CD25 (LMB-2) monoclonal antibodies.51,52 In 2000, a report of 4 patients who were treated with LMB-2 (a recombinant immunotoxin against CD25) noted that 3 of them achieved a PR and 1 achieved a CR.51 In 2005, a phase I study of 31 patients who were treated with BL-22 (an anti-CD 22 recombinant immunotoxin) resulted in an ORR of 80%, with a CR of 61% and a PR of 19%.52 In 2011, the BRAF V600E mutation was found in all 47 HCL patients. Vemurafenib (a BRAF inhibitor that has shown clinical benefit in patients with advanced forms of melanoma) has also recently been shown to have activity as a single agent in the treatment of refractory HCL.53-55

Complications in HCL
Patients with HCL are susceptible to infectious complications. They can develop anemia, thrombocytopenia, neutropenia, monocytopenia, or platelet dysfunction at any time during their disease course.1 Other complications include lytic bone lesions, inflammatory arthritis, vasculitis, and T-cell dysfunction. Splenic rupture has also been reported.1,22 Although infections are the most common cause of death in these patients, there are no established recommendations for routine antimicrobial, antiviral, or antifungal prophylaxis.20 Individuals with HCL also appear to be at a higher risk for the development of secondary malignancies.16-18

Conclusion
HCL is a rare, B-cell chronic lymphoproliferative disorder. The disease is indolent, so patients should be observed until they develop signs or symptoms of disease progression. Those who require therapy are initially treated with purine analogs. Other therapeutic options include monoclonal antibodies, IFN-α, and splenectomy when clinically warranted. Monoclonal antibodies can be used alone or in combination with purine analogs, and are currently being evaluated in clinical trials. Future directions include the development of novel targeted therapies; further evaluation of monoclonal antibodies as single agents and in combination in the upfront setting; and subsequent lines of therapy in well-designed clinical trials.

References


