Magnetic Resonance Imaging of Complications of Anterior Cruciate Ligament Reconstruction

Etan Dayan, MD, Alex Maderazo, MD, MBA, and Darren Fitzpatrick, MD

Abstract
The incidence of anterior cruciate ligament reconstruction (ACL-R) has increased in recent years. ACL-R plays an important role in the prevention of secondary osteoarthritis from resultant joint instability. Magnetic resonance imaging is the preferred modality in the evaluation of ACL-R complications. Complications after ACL-R may be broadly characterized as those resulting in decreased range of motion (arthrofibrosis, impingement) and those resulting in increased laxity, ie, graft disruption. Other miscellaneous complications that do not fall into these categories will also be discussed in this article.

Magnetic resonance imaging (MRI) is the preferred modality in the evaluation of complications of anterior cruciate ligament reconstruction (ACL-R).1,3 ACL-R complications may be broadly characterized as those resulting in decreased range of motion (ROM), eg, arthrofibrosis and impingement, and those resulting in increased laxity, ie, graft disruption.7 Short tau inversion recovery (STIR) sequences best minimize artifact related to field inhomogeneity in the presence of metal-containing fixation devices. Patients with contraindications to MRI may undergo high-resolution computed tomographic arthrography of the knee for evaluation of postoperative graft abnormalities.1

Arthrofibrosis refers to focal or diffuse synovial scar tissue, which may limit ROM. Preoperative irritation, preoperative limited ROM, and reconstruction within 4 weeks of trauma may all play a role in the development of arthrofibrosis.5,6 The focal form, cyclops lesion, named for its arthroscopic appearance, has been reported in 1% to 10% of patients with ACL-R.1 On MRI, focal arthrofibrosis may be seen as a focal or diffuse intermediate signal lesion in the anterior intercondylar notch extending linearly along the intercondylar roof (Figure 1).

MRI can be used to accurately determine the position of the femoral and tibial tunnels. Correct femoral tunnel position results in isometry of the graft during full ROM of the knee. Graft impingement can occur when the tibial tunnel is placed too far anteriorly such that the graft contacts the roof of the intercondylar notch before the knee is able to fully extend.7 A tibial tunnel placed anterior to the intersection of the Blumensaat line and the tibia is at higher risk for impingement.1,4 Impingement may be accompanied by signal change in the graft on intermediate-weighted and fluid-sensitive sequences. The signal abnormality is usually focal and persists longer than the expected signal changes related to revascularization of immature grafts within the first year (Figure 2). If left untreated, impingement may progress to graft rupture.4

Complete graft rupture is diagnosed on the basis of discontinuity of the graft fibers. MRI findings include fluid-filled defect or absence of intact graft fibers. Other reliable signs include large joint effusion, anterior tibial translation, pivot-shift-type marrow edema pattern, and horizontal orientation, laxity, or resorption of the graft fibers.1,8,9 The diagnosis of partial graft rupture may be challenging, as there are several other causes of increased graft signal, including revascularization (within 12 months after procedure), signal heterogeneity between individual bundles of hamstring grafts, and focal signal changes related to impingment (Figures 3, 4).

Fluid within the tunnels is a normal finding after surgery and typically resolves within the first 18 months.1 Cyst formation within the tibial tunnel is an uncommon complication.

Figure 1. (A) Intermediate-weighted and (B) sagittal T2-weighted fat-saturated magnetic resonance imaging shows ovoid focus of intermediate signal within anterior aspect of intercondylar notch representing focal arthrofibrosis (white arrow).

Authors’ Disclosure Statement: The authors report no actual or potential conflict of interest in relation to this article.
of ACL-R and may be incidental to or present with clinical symptoms caused by extension into the pretibial soft tissues or expansion of the tunnel (Figure 5). Communication of cyst with joint space is important, as a noncommunicating cyst requires simple excision without need for bone grafting.7

Hardware-related complications (eg, loosening of fixation devices) are uncommon but may require revision surgery (Figure 6). Septic arthritis after ACL-R has a cumulative incidence...
of 0.1% to 0.9% and may be difficult to diagnose clinically because of the lack of classic symptoms of a septic joint. Diagnosis requires joint aspiration.

MRI is reliably and accurately used to assess ACL-R complications. The clinical history helps in stratifying complications that result in decreased ROM or increased laxity.

Dr. Dayan is Resident, Dr. Maderazo is Section Chief of Musculoskeletal Imaging, and Dr. Fitzpatrick is Director of Musculoskeletal Procedures, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York.

Address correspondence to: Darren Fitzpatrick, MD, Department of Radiology, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Pl, New York, NY 10029 (tel, 212-241-6681; email, darren.fitzpatrick.md@gmail.com).

Am J Orthop. 2015;44(12):569-571. Copyright Frontline Medical Communications Inc. 2015. All rights reserved.

References

This paper will be judged for the Resident Writer’s Award.