New cervical cancer screening strategy: Combined Pap and HPV testing

ABSTRACT

Our strategy for cervical cancer screening is being revolutionized by our new understanding of how human papillomavirus (HPV) contributes to carcinogenesis and the natural history of cervical cancer. The American Cancer Society and the American College of Obstetricians and Gynecologists now recommend combined HPV and Papanicolaou (Pap) testing for cervical cancer screening in women age 30 or older. However, although incorporation of HPV DNA testing into primary screening provides clear benefits, it also raises new questions.

KEY POINTS

HPV infection most often is transient in younger women. With increasing age, the likelihood increases that HPV positivity represents persistent disease, and only those who have persistent high-risk HPV infection are at risk of cervical cancer.

OMEN AGE 30 and older may undergo combined Papanicolaou (Pap) and human papillomavirus (HPV) testing to screen for cervical cancer, according to new guidelines from several professional societies.\(^1\) If both test results are negative, subsequent screening can be at 3-year intervals.

These recommendations came after the US Food and Drug Administration (FDA) approved the HPV test (Hybrid Capture 2; Digene Corporation, Gaithersburg, MD) as an adjunct for primary cervical cytology screening. The United States Preventive Services Task Force (USPSTF),\(^4\) however, finds that there is insufficient evidence to recommend for or against its routine use for this purpose.

Up to now, the HPV test has been recommended and approved only as a follow-up test for women with a Pap test finding of atypical squamous cells of undetermined significance (ASC-US).\(^5\) For women younger than 30 years, screening is still every year with conventional Pap testing or every 2 years with ThinPrep Pap testing (or every 3 years according to the USPSTF).

These are exciting times in the field of cervical cancer detection and prevention, as progress in understanding the role of HPV in carcinogenesis is being applied to clinical practice (Table 1).\(^6\)–\(^13\)

This article briefly reviews contemporary concepts of cervical cancer carcinogenesis, evidence supporting HPV testing in primary screening, current practice guidelines, commonly asked questions, and future directions in screening.

ROLE OF HPV IN CERVICAL CANCER

HPV infection is necessary for cervical cancer to develop but does not suffice by itself.\(^14\)–\(^18\)
To date, more than 80 HPV types have been identified, and more than 30 of these can infect the genital tract. Certain genital HPV types (16 and 18) are associated with a substantially higher risk of cervical cancer than other types. HPV types that carry a moderate risk of cervical cancer include 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82. Types 6 and 11 carry a low risk.

Extensive studies provide compelling evidence that infection of the cervix with one of the 15 high-risk or moderate-risk HPV types is required for the development of virtually all cervical cancers. A multicenter study from 22 countries found that HPV DNA could be detected in 93% of squamous cell carcinomas of the cervix. Furthermore, HPV DNA can also be isolated from metastatic cervical cancer tissues and from cervical cancer tumor cell lines in vitro.

Finally, in vitro studies are shedding light on the mechanism by which HPV infection increases the risk of cancer. Combining the HPV test with the Pap test in primary cervical cancer screening is the logical extension of the knowledge acquired over the past 2 decades on the natural history of HPV infection and cervical cancer development.

HPV infection precedes the development of cytologic abnormalities

WHY HPV-PLUS-PAP TESTING IS THE NEW STANDARD OF CARE

Pap testing lacks sensitivity

For the last 5 decades, annual Pap testing has been the standard of care in screening for cervical cancer. It has decreased both the incidence of cervical cancer and the number of deaths due to cervical cancer by about 75%.

However, in routine screening, the estimated true sensitivity of the conventional Pap test is only 50% to 60%. Pap screening is successful, despite this relative insensitivity, because patients undergo repeated testing. The new liquid-based ThinPrep technology (Cytyc Corporation, Boxborough, MA) has improved the sensitivity of Pap testing. Yet Pap testing may still miss 15% to 35% of cases of cervical intraepithelial neoplasia grade 3 (CIN 3, a precursor of cancer) or cancer itself.

In addition, Pap tests must be interpreted by a pathologist, and results are not very reproducible. And pathologists who, despite their best efforts, failed to detect CIN or cervical cancer on conventional Pap smears have been exposed to increasing numbers of lawsuits. Therefore, the conventional Pap smear by itself no longer meets the expectations of clinicians and patients.

HPV testing is more sensitive

In a search for a more sensitive screening test, multiple large-scale studies from many countries evaluated the role of HPV testing in primary screening. Important findings from these studies:
The high-risk HPV DNA test was positive in 80% to 100% of cases of histologically confirmed CIN 2 or cancer.

HPV testing was more sensitive in detecting CIN 2, CIN 3, or cancer than a single Pap test. (It was, however, less specific. For this reason, HPV testing cannot replace Pap testing. Combined, the two tests have a specificity of 70% to 96%.)

When HPV testing was combined with a Pap smear, the sensitivity was even higher than that of HPV testing used alone.

Most important: the combination of a negative Pap smear and a negative HPV test indicated absence of CIN 3 or cancer to a certainty of almost 100%.

Specificity of HPV testing increases with age

Women who test positive for HPV on more than one occasion do not necessarily have persistent infection with the same type of high-risk HPV, nor will they necessarily go on to develop cervical cancer.

Sherman et al reported that the prevalence of high-risk HPV infection declines with age: only 31.2% among women with ASCUS who were 29 years or older, compared with 65% in those age 28 and younger. HPV infection most often is transient in younger women. With increasing age, the likelihood increases that HPV positivity represents persistent disease, and only those who have persistent high-risk HPV infection are at risk of cervical cancer.

As a result, both the specificity and the positive predictive value of an HPV test increase with the age of the patient. Therefore, combined HPV-plus-Pap testing in women age 30 years or older is the new standard of care in cervical cancer screening.

Potential Harm from HPV Testing

Adding HPV testing to Pap testing brings clear potential benefits but also poses the risks of overuse and unnecessary invasive treatment.

HPV infection is very common in women, but few of these women will develop cervical cancer or a high-grade precancerous lesion. Combined HPV-plus-Pap testing will identify 10% to 20% of adult women as having transient, clinically insignificant HPV infection.

It is very important to restrict HPV testing to women age 30 or older, to provide adequate counseling regarding their risk of cervical cancer, and to avoid unnecessary invasive therapy such as the loop electrosurgical excision procedure (LEEP).

Current Guidelines for Screening

In view of recent advances (Table 1), the American Cancer Society, the USPSTF, and the American College of Obstetricians and

Table 2

Combined HPV and Pap testing in primary screening

<table>
<thead>
<tr>
<th>Study</th>
<th>Location</th>
<th>No. of Women</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Negative Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petry et al</td>
<td>Germany</td>
<td>7,592</td>
<td>34 86 94</td>
<td>99 97 96</td>
<td>0.999</td>
</tr>
<tr>
<td>Cuzick et al</td>
<td>United Kingdom</td>
<td>10,358</td>
<td>72 97 100</td>
<td>99 94 93</td>
<td>1.000</td>
</tr>
<tr>
<td>Salmeron et al</td>
<td>Mexico</td>
<td>6,115</td>
<td>57 94 98</td>
<td>99 94 94</td>
<td>1.000</td>
</tr>
<tr>
<td>Schiffman et al</td>
<td>Costa Rica</td>
<td>6,176</td>
<td>80 86 92</td>
<td>95 94 90</td>
<td>0.998</td>
</tr>
<tr>
<td>Belinson et al</td>
<td>China</td>
<td>1,936</td>
<td>94 98 100</td>
<td>78 85 70</td>
<td>1.000</td>
</tr>
<tr>
<td>Womack et al</td>
<td>United States</td>
<td>1,040</td>
<td>60 100 100</td>
<td>98 97 96</td>
<td>1.000</td>
</tr>
</tbody>
</table>

*For CIN 2+ = cervical intraepithelial neoplasia grades 2 and 3 or cancer

Mechanisms of HPV oncogenesis

Evidence about the mechanism by which HPV contributes to oncogenesis comes from in vitro studies, in which human epithelial cells that are infected with high-risk types of HPV become immortal. Other in vitro studies have identified two HPV viral gene products, the proteins E6 and E7, that are necessary for immortalization.

E6 proteins from high-risk HPV types interact with the cellular tumor-suppressor protein p53. In noninfected cells, p53 levels increase in response to cellular or DNA damage or aberrant cell proliferation signals. High levels of p53 cause the cell to stop growing in the G1 phase of the cell cycle and allow it to either repair damaged DNA before the next round of DNA synthesis or be eliminated through programmed cell death (apoptosis).

In HPV-infected cells, the E6 protein binds to p53, resulting in rapid proteolytic degradation of the bound p53 through a ubiquitin-dependent pathway. The decreased level of p53 diminishes the cell’s ability to control the cell cycle and repair DNA damage and ultimately leads to uncontrolled cell growth.

In contrast, E6 proteins from low-risk HPV types do not bind p53 in detectable levels and have no effect on p53 stability in vitro. This weak affinity for p53 may explain the lesser oncogenic potential of the low-risk HPV types.

Similarly, E7 proteins from high-risk HPV types interact with another cellular tumor-suppressor protein, the retinoblastoma protein (pRB). The binding of E7 proteins to pRB disrupts the complex between the cellular transcription factor E2F-1 and pRB. This results in the release of E2F-1, allowing it to stimulate cellular DNA synthesis and uncontrolled cell growth. Again, the E7 protein from low-risk HPV types 6 and 11 binds pRB with a much weaker affinity.

Mechanisms of HPV oncogenesis

Incorporating HPV testing into primary screening provides a better risk assessment and an excellent negative predictive value, but also raises some new questions from patients and clinicians.

Why do we need to add HPV testing?
Isn’t the Pap test effective by itself?
The Pap smear is relatively insensitive and has to be repeated frequently to detect the disease in the general population. The problem with frequent testing is that it detects many cases of transient and minimal abnormalities that would not progress to cervical cancer. As a result, many women with abnormal Pap tests but no significant underlying pathology will undergo an invasive procedure to ensure that they do not have precancerous lesions.

Studies have also shown that almost one third of women with invasive cervical cancer have had one or more normal Pap tests or no abnormal Pap test during the previous 3 years. The ALTS trial demonstrated that HPV testing can predict who really is at risk for CIN 2, CIN 3, or cancer and who is not. Most recent large clinical screening trials clearly demonstrated that combined HPV-plus-Pap testing has greater sensitivity for detecting these lesions than does Pap testing by itself.
Furthermore, if both the Pap and HPV tests are negative, then the probability that CIN 3 or cancer is absent (the negative predictive value) is almost 100%.

Therefore, combined HPV-plus-Pap testing allows us to better identify women at risk of developing cervical cancer and to reassure women that “negative is negative” with a high degree of certainty.

Is it safe to screen women every 3 years?
Some clinicians are concerned that even if a woman tests negative on both the HPV and Pap tests, she could subsequently acquire HPV from a new sexual partner and might be at risk of developing invasive cancer before her next screening in 3 years.

It is true that a woman can have a double-negative test today, acquire high-risk HPV tomorrow, and develop high-grade CIN within a few weeks or months. However, the transit time—the time from initial infection to the development of cervical cancer—usually exceeds 10 years.48 Her high-grade CIN will be detected at her next screening, long before 10 years.

We have a similar screening model in clinical practice: colonoscopy. A negative colonoscopy at age 50 indicates a very low risk of colon cancer in the next 10 years, since the transit time is long. Therefore, clinicians should have a high level of comfort in promoting a longer screening interval in women over 50 who test negative on both the HPV and the Pap test.

Table 3

Recommendations for cervical cancer screening

HPV DNA testing for primary screening
- **ACS**: Yes, in combination with the Papanicolaou (Pap) test in women 30 years and older
- **ACOG**: Same as ACS recommendation
- **USPSTF**: Insufficient evidence to recommend for or against routine use

When to start screening
- **ACS**: Approximately 3 years after the onset of vaginal intercourse; no later than age 21
- **ACOG**: Same as ACS
- **USPSTF**: Same as ACS

Screening interval
- **ACS**: Annual with conventional Pap test or every 2 years using liquid-based ThinPrep until age 30.
 At or after age 30, Pap combined with HPV testing; if both negative, every 3 years
- **ACOG**: Annually in women < 30 years old; in women > 30 years old, same as ACS
- **USPSTF**: Every 3 years

When to stop screening
- **ACS**: Age 70 and older who have had three or more consecutive normal Pap tests
- **ACOG**: Individual basis
- **USPSTF**: Age 65 if she had adequate recent screening with normal Pap smears

Screening after hysterectomy
- **ACS**: If hysterectomy for a benign condition: no more screening; if hysterectomy was for precancer: continue screening for 10 years to achieve three consecutive negative Pap tests; if hysterectomy was for cancer, continue screening as long as the patient is in reasonably good health
- **ACOG**: If hysterectomy was for grade 2 or 3 cervical intraepithelial neoplasia, continue annual screening until three consecutive Pap smears are negative
- **USPSTF**: Same as ACS

ACS = American Cancer Society, ACOG = American College of Obstetricians and Gynecologists, USPSTF = United States Preventive Services Task Force
Pap-negative but HPV-positive: Is it a ‘false-positive’?
The combination of a positive HPV test plus a negative Pap test should not be considered a false-positive result, since HPV infection precedes the development of cytologic abnormalities.49 If the HPV infection persists, the woman is at high risk of developing cervical cytologic abnormalities that will be detected on a subsequent Pap test.50,51 Such patients should be followed closely.

‘I am HPV-positive. How did I get it? Who gave it to me and when?’
HPV infection is indeed transmitted by sexual contact. Most likely, a woman with HPV infection acquired it from her sexual partner.52,53 However, due to the latency of HPV infection, it is almost impossible to determine when she acquired it or from which partner. HPV infection certainly does not suggest infidelity or promiscuity.

Physicians need to provide appropriate counseling to women who test positive for HPV to avoid unnecessary anxiety and negative implications in personal relationships.

Should we test the male partners of women testing positive for HPV?
Screening male partners is not recommended at present.

Overall, little is known about the natural history of penile HPV infection.54 Although men are believed to be vectors for HPV transmission, HPV DNA testing does not accurately reflect a man’s HPV infection status or lifetime exposure to HPV even using highly sensitive methods.55

Only about one fifth of men whose wives are positive for CIN 3 test positive for penile HPV. Furthermore, the same HPV types are rarely identified in husbands and wives.56

Management algorithm after combined Pap and HPV testing

<table>
<thead>
<tr>
<th>Primary Pap and HPV test</th>
<th>Pap negative HPV negative</th>
<th>Repeat in 3 years</th>
<th>Routine screening every 3 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pap negative HPV positive</td>
<td>Repeat both tests in 6-12 months</td>
<td>Pap ASCUS HPV negative</td>
<td>Repeat Pap and HPV in 12 months</td>
</tr>
<tr>
<td>Pap ASCUS HPV negative</td>
<td>Repeat Pap in 12 months</td>
<td>Pap LSIL or HSIL HPV negative</td>
<td>Colposcopy</td>
</tr>
<tr>
<td>Pap ASCUS HPV positive</td>
<td>Colposcopy</td>
<td>Any Pap result HPV positive</td>
<td>Colposcopy</td>
</tr>
<tr>
<td>Pap LSIL or HSIL Any HPV result</td>
<td>Colposcopy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASCUS = atypical squamous cells of undetermined significance, HPV = human papillomavirus (testing by Hybrid Capture 2), HSIL = high-grade squamous intraepithelial lesion, LSIL = low-grade squamous intraepithelial lesion, Pap = Papanicolaou smear

FIGURE 1

REFERENCES

