Movement disorders in the older patient: Differential diagnosis and general management

Mark S. Baron, MD

Abstract

Movement disorders are especially prevalent in the elderly, and some are highly treatable. Because reduced agility and slowing of gait are associated with numerous movement disorders as well as with the normal aging process, the differential diagnosis of movement disorders in the elderly can be challenging. Many of these disorders share features of parkinsonism—hypokinesia, tremor, and muscular rigidity. This article reviews common and less common movement disorders in the elderly from a primary care perspective, with an emphasis on the presenting features and the differential diagnosis. It also provides general management recommendations with advice for tailoring treatment to elderly patients.

Key Points

A number of movement disorders—Parkinson disease (PD), essential tremor, dementia with Lewy bodies, small-vessel ischemic disease, and restless legs syndrome—are common in the elderly, with prevalences of more than 1% in this population.

Most medications for treating movement disorders should be titrated more slowly in elderly patients than is recommended by the manufacturers.

PD is defined by the presence of two of three cardinal motor signs—tremor, rigidity, and bradykinesia—in the absence of other causes for parkinsonism.

Early mobility problems in PD are usually treated with levodopa or dopamine agonists. Levodopa is more effective, better tolerated, easier to titrate, and less costly, but it may accelerate the onset of motor fluctuations.

Dopamine agonists should be avoided in elderly PD patients with confusion or hallucinations, as they are more apt than levodopa to cause or exacerbate these problems.

Parkinsonism can have many causes other than PD, including certain medications, multiple system atrophy, progressive supranuclear palsy, dementia with Lewy bodies, and other neurologic conditions.

Movement disorders are especially prevalent in the elderly, and both the large number of these disorders and their similarities can make differential diagnosis a challenge. Many of these disorders share the hallmark features of parkinsonism—hypokinesia, tremor, and muscular rigidity. Moreover, some of the symptoms of movement disorders can resemble the slowing of gait and reduced agility that accompany the normal aging process, in which the spine degenerates, joints become more lax and deteriorate, and peripheral sensory receptors degenerate.

This article provides a concise review for primary care physicians of key diagnostic features of common movement disorders in the elderly and less common conditions that mimic these disorders. It also provides an overview of recommended treatment strategies. Specific treatment algorithms will not be presented; instead, recommendations are offered for tailoring to individual elderly patients. With the principal exception of most medications used to treat Parkinson disease (PD), most of the recommendations include off-label uses for medications approved by the US Food and Drug Administration for other indications. Most...
of these recommendations are supported by good clinical studies and are widely followed by clinicians caring for these patients.

Because of the prevalence of PD and the complexity of its treatment, emphasis will be given to this disorder. Because other conditions in the elderly can be difficult to distinguish from PD (Table 1), the differential diagnosis of parkinsonism will also be a focus.

PARKINSON DISEASE

PD is a primary degenerative disease characterized by the loss of the neurotransmitter dopamine from the substantia nigra. It is increasingly common with advancing age, with a prevalence approaching 1% by age 65 and 2% at age 80.1,2

Patients with PD can normally remain independent and ambulatory (albeit slower) for a very long time. In a large series of patients with pathologically confirmed parkinsonian disorders reported in 2000,3 no patients with PD progressed from initial symptom onset to stage III on the Hoehn and Yahr Scale of disability (ie, gait unsteadiness or imbalance, with or without falls) within 1 year of the onset of motor symptoms, whereas 72% of patients with atypical parkinsonism (multiple system atrophy, progressive supranuclear palsy, dementia with Lewy bodies, or corticobasal degeneration) did. The median time to progression to Hoehn and Yahr stage IV (severe disability, but still able to walk or stand unassisted) was approximately 14 years for those with PD vs less than 5 years for those with atypical parkinsonism. The advent of new medications and surgical interventions promises even a better prognosis for PD patients in the future.

Diagnosis

Although consensus criteria are lacking, movement disorder specialists often define PD by the presence of two of the following three cardinal motor signs in the absence of other apparent causes for parkinsonism:

- Tremor
- Rigidity
- Bradykinesia.

Drug-induced parkinsonism due to the use of dopamine-blocking agents (eg, neuroleptics, metoclopramide) should be especially excluded. A symmetric tremor is the most common early symptom of PD encountered by primary care physicians and should always raise the possibility of PD. However, the absence of tremor should not exclude consideration of the possibility of PD. In fact, tremor is also the only cardinal feature that may never occur.

Stricter criteria for a diagnosis of PD require an unequivocal response to a dopaminergic medication (at least 1,000 mg/day of levodopa), but this requirement is limiting in that many patients with early symptoms are not treated.4 Also, some patients with other forms of parkinsonism may respond to medications, at least initially. Additionally, rest tremor can be medication-resistant, although such an occurrence should always prompt review of the diagnosis. For patients with features typical of PD who respond predictably to antiparkinsonian medications, imaging studies are generally not necessary.

Postural instability is often considered a fourth cardinal feature of parkinsonism but is not generally considered in the diagnosis of PD because of its frequent presence in other parkinsonian syndromes. Moreover, if a patient exhibits postural instability (ie, stage III on the 5-stage Hoehn and Yahr Scale) within 1 year of the onset of motor symptoms or is wheelchair-dependent (Hoehn and Yahr stage V) within 7 or 8 years of disease onset, an alternative diagnosis is almost certain.5 On occasion, uncertainty about responsiveness to a dopaminergic medication can be settled by gradually withdrawing the medication. See Table 1 for a summary of differentiating features of parkinsonian conditions in the elderly, most of which are described in detail in the text below.

General treatment considerations

A number of medications across several drug classes are commonly used to treat PD (Table 2). These include the mainstay therapy levodopa (the levorotatory form of dopa, the precursor of dopamine) as well as dopamine antagonists, catechol-O-methyltransferase (COMT) inhibitors, and anticholinergic agents. The focus here is on general pharmacologic treatment considerations, since neurology consultation is warranted with complicated drug regimens or advanced stages of PD and since most patients with complicated courses of PD are co-managed by neurologists in addition to their primary care physicians. It is also worth noting that most drugs that affect the central nervous system (whether for PD or other movement disorders discussed below) should be titrated more slowly in the elderly than is normally recommended by the manufacturers (see titration recommendations in Table 2).

Protective therapy

To date, no medications have convincingly been shown to delay the progression of PD. Epidemiologic studies suggest that caffeine,6-8 tobacco,9 and non-steroidal anti-inflammatory drugs10 may reduce the risk for PD, but it would be difficult to advocate the regular use of these agents.

Table 1

<table>
<thead>
<tr>
<th>Differential diagnosis of parkinsonism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkinson disease</td>
</tr>
<tr>
<td>Drug-induced parkinsonism</td>
</tr>
<tr>
<td>Atypical parkinsonism</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Medications and Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levodopa</td>
</tr>
<tr>
<td>Dopamine antagonists</td>
</tr>
<tr>
<td>Catechol-O-methyltransferase inhibitors</td>
</tr>
<tr>
<td>Anticholinergics</td>
</tr>
</tbody>
</table>
Levodopa vs dopamine agonists.

Because of experimental and clinical evidence suggesting that treatment with levodopa, but not with dopamine agonists, accelerates the onset of motor fluctuations, dopamine agonists are commonly considered the preferred first-line agents for treating early mobility problems. On the other hand, levodopa is more effective, better tolerated, easier and quicker to titrate, and considerably less expensive. For older patients, these factors may favor the choice to initiate therapy with levodopa, but this decision should be based on the patient’s overall health and cognition and not solely on chronological age. Also, even though dopaminergic medication–induced involuntary movements (dyskinesias) develop in approximately 40% of treated PD patients, motor complications are less prevalent in patients who are elderly.13

Levodopa. Levodopa is given with carbidopa, a peripheral dopa decarboxylase inhibitor, to reduce the systemic breakdown of levodopa. Without carbidopa, nearly all patients would experience intolerable side effects, mainly nausea and vomiting. Regular carbidopa/levodopa may be a good first choice in the elderly and is less expensive than sustained-release formulations (see Table 2 for recommended dosages). Although pulsatile exposure of dopamine receptors to levodopa is purported to accelerate motor fluctuations, a head-to-head study did not show any benefit of sustained-release vs regular carbidopa/levodopa in time to onset of motor fluctuations.14 The convenience of a sustained-release formulation should be weighed against the additional cost.

Options among dopamine agonists. Bromocriptine was the first dopamine agonist approved in the United States but has been shown to be relatively less effective than the newer agents in this class.15–19 Pergolide, like bromocriptine, is an ergot-derived dopamine agonist, but it has fallen into disfavor because of an associated risk for inducing valvular and pulmonary fibrosis.20 If either of these agents is used, patients should undergo yearly echocardiogram studies and be monitored for pulmonary involvement.

Pramipexole and ropinirole are the newest dopamine agonists approved in the United States. Both are administered orally, and they have comparable efficacy and side-effect profiles (Table 2). Although patients can occasionally be switched between these agents in response to side effects, there is little evidence that this offers the potential for better clinical efficacy.

Compared with levodopa, dopamine agonists are more likely to cause confusion and hallucinations and should be avoided in patients already manifesting these problems. A low threshold for eliminating dopamine agonists is appropriate in elderly patients. Even advanced disease can generally be managed with levodopa therapy alone without compromising control of parkinsonian symptoms, although consultation with a neurologist (preferably a movement disorder specialist) is advised in such advanced cases. Because

Table 1

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Differentiating clinical features</th>
</tr>
</thead>
</table>
| Parkinson disease (PD) | • Usually presents with asymmetric parkinsonian symptoms
• Falling is rare early in course
• Patient is ambulatory for >10 yr from onset
• Highly responsive to dopaminergic drugs |
| Drug-induced parkinsonism | • Most often due to neuroleptics or metodopramide
• If parkinsonian symptoms are asymmetric, the offending drug is probably unmasking or exacerbating underlying PD |
| Multiple system atrophy | • Symmetric presentation
• Autonomic dysfunction frequent (not universal)
• Parkinsonism or cerebellar ataxia may predominate
• Cognition is preserved
• Medication-resistant
• Patient wheelchair-dependent within 5 yr |
| Progressive supranuclear palsy | • Symmetric presentation
• Prominent midline involvement
• Falling from outset
• Vertical gaze palsy (not universal)
• Neuropsychiatric features
• Medication-resistant
• Patient wheelchair-dependent within 5 yr |
| Dementia with Lewy bodies | • Clinically resembles PD, but with progressive and prominent dementia beginning within 1 yr of onset of motor features
• Variable medication response with poor tolerance due to hallucinations |
| Small-vessel arteriopathy | • Usually history of hypertension, often of transient ischemic attacks/strokes
• Clinically, dementia, diffuse hyperreflexia, Babinski signs, disproportionate involvement of legs/gait and often relatively preserved finger-tapping
• Medication-resistant |
| Normal-pressure hydrocephalus | • Triad of gait ataxia, dementia, urinary incontinence
• MRI: ventricular enlargement disproportionate to cortical atrophy and small-vessel ischemic changes
• Confirmed by beneficial response to large-volume tap (30–50 mL) |
dopamine agonists and, to a lesser extent, levodopa have been associated with sleep attacks, it is imperative that patients be warned of this risk.21

Uncertain role for COMT inhibitors. In theory, there could be long-term benefit from the early use of COMT inhibitors (eg, entacapone), which block one of the major enzymes that break down dopamine, but without supportive evidence, it is difficult to justify the additional cost of introducing a COMT inhibitor at an early stage.

Treatment of tremor
Levodopa, dopamine agonists, and anticholinergic medications can be highly effective for treating parkinsonian tremor.22 Some patients require 1,000 mg or more of levodopa daily for adequate control. Because anticholinergic medications (and the antiviral drug amantadine) have a high propensity to cause confusion in the elderly, they should be considered second-line agents in most elderly persons. Ethopropazine may produce relatively less confusion than other anticholinergic agents but is available in the United States only from select compounding pharmacies; its usual therapeutic dose is 50 to 100 mg three times daily.

Medication adjustments in the wake of reduced dopaminergic response
Regular medication adjustments are generally needed in response to the progressive degeneration of dopamine-producing cells and to keep pace with PD progression. These adjustments should balance concerns about introducing levodopa (and potentially accelerating motor fluctuations) against the need to adequately treat parkinsonian symptoms. The key is to tailor adjustments to the individual patient. For example, if a patient complains of doing poorly in the morning but not during the rest of the day, only the first morning dose needs to be increased. For unsatisfactory responses due to inadequate dosing, increasing the levodopa dose is likely to provide similar efficacy at significantly less cost than adding a COMT inhibitor. A formulation combining carbidopa/levodopa with the COMT inhibitor entacapone is available, but it is significantly more expensive than using carbidopa/levodopa alone.

‘Wearing off’ and unpredictable medication responses
Within 3 to 5 years of starting levodopa therapy, many patients begin to experience a decrease in the duration of their response to individual doses of the drug. This “wearing off” has been attributed to reduced storage capacity of ingested as well as endogenous dopamine in axon terminals in the striatum as a result of continued loss of dopamine-producing cells and associated secondary axonal degeneration.

End-of-dose wearing off is fundamentally different from a lack of sufficient response to a given dose level. Although increasing individual doses can extend the effective “on” period (ie, the period of greater mobili-
ty and treatment response), problems of wearing off are generally best treated by reducing the interval between levodopa doses. Because of the longer duration of response to dopamine agonists relative to levodopa, adding or increasing the dose of a dopamine agonist can be a useful approach to problems of wearing off. Aiso, patients may benefit from switching to sustained-release preparations of carbidopa/levodopa or adding entacapone.

At this stage of PD, entacapone can extend the on time in response to an individual dose of levodopa by up to 30 minutes or more.23,24 Alternatively, another COMT inhibitor, tolcapone, is available and appears to have greater long-term benefits than entacapone on motor symptoms and in reducing off time.25 However, tolcapone was reported to be associated with 3 deaths from fulminant hepatic failure among 40,000 patient-treatment years—10 to 100 times the anticipated rate.26 The drug has not been withdrawn from the US market, however, and no further tolcapone-related deaths have been reported since regular monitoring requirements have been in place.26 Because of its demonstrated efficacy, tolcapone should be considered for treatment of patients with otherwise medication-resistant disease.

With further disease progression, many patients experience unpredictability of medication responses and sudden off periods. In a minority of patients, particularly those with more advanced disease, competition between neutral amino acids from ingested protein and levodopa for transportation into the central nervous system via a saturable transporter system may influence medication responsiveness. Such patients may need to limit ingestion of protein for at least 1 hour before and after taking levodopa. Poor stomach motility may also contribute to erratic responses by preventing normal levodopa transport to the duodenum. Metoclopramide, often prescribed to treat gastrointestinal dysmotility, may aggravate parkinsonism.

Some patients at this stage benefit greatly from a short rest period or nap. Rescue doses of regular carbidopa/levodopa often can effectively treat poor on responses or sudden off periods. A new orally disintegrating levodopa formulation may offer selected patients greater convenience, ease of use, and rapid access to medication, which may increase on time.27 Another option is apomorphine, an injectable dopamine agonist recently approved in the United States specifically for the intermittent treatment of off episodes in patients with advanced PD. Onset of response to apomorphine is typically within 10 minutes, compared with 20 to 30 minutes or longer for regular carbidopa/levodopa.

Besides the need to inject apomorphine, its use is complicated by the need to premedicate, at least initially, with an antinausea agent. Despite these limitations, intermittent subcutaneous apomorphine therapy is generally well tolerated and can reduce off time by up to 50% or more in patients with advanced disease.28

Drug-induced dyskinesias
Dyskinesias are associated with on periods, and most patients prefer dyskinesias, regardless of their severity, to severe off periods of immobility. Nevertheless, dyskinesias can be quite debilitating and may require limiting the dose of dopaminergic medications.

A mantadine can be used to treat dyskinesias, but its benefits normally last only for up to 8 months.29 The neuroleptic clozapine can be effective in treating dopaminergic medication-induced dyskinesias, but its use is limited by the risk of agranulocytosis and the need for weekly drawing of blood samples. Preliminary experience suggests that the atypical neuroleptic quetiapine may also ameliorate dyskinesias. Unlike the smaller doses of quetiapine used to control hallucinations induced by dopaminergic medications, doses of 200 mg or more (generally at bedtime) may be required and can generally be well tolerated even in elderly patients.30,31 In response to this treatment of dyskinesias, higher doses of dopaminergic medications may be tolerated.

Postural instability
Within 5 to 10 years of diagnosis of PD, most patients encounter balance problems and some may experience regular falls. This feature normally develops slowly, however, and if it is prominent early on, it is a red flag suggesting an alternative diagnosis.

Balance problems usually are not improved by dopaminergic medications. Patients with balance problems should be referred to a physical therapist, who can suggest useful means to avoid falls and recommend such aids as a cane or walker. Such patients can be instructed to recognize and temper potentially risky situations, such as rushing to answer the telephone or carrying dinner plates.

Associated symptoms
Besides problems related to motor function, most patients with PD experience additional bothersome symptoms due to the disease itself or to its treatment. Even when these cause more problems than the motor symptoms, patients and their caregivers may not always freely mention them to the physician.

Dementia. PD-related dementia does not regularly progress as aggressively as that associated with
A diagnosis of Alzheimer disease (AD) or dementia with Lewy bodies, so the presence of a rapidly progressive dementia should especially raise consideration of another etiology. At the same time, PD-related dementia eventually develops in a high percentage of patients, albeit at a slower pace. Elimination of such medications as selegiline, amantadine, anticholinergics, and dopamine agonists can often result in significant improvement in cognition, particularly in patients experiencing hallucinations.

Generally, these patients can benefit from reducing or eliminating dopamine agonists in favor of levodopa.

Depression. Depression is thought to be due more often to the neurodegenerative process of PD than to reactive depression, in part because the depression in patients with PD tends to be keenly responsive to antidepressant medications. A dissociated depression is often more debilitating than the underlying parkinsonism and must be treated (see separate article on depression on page S52 of this supplement).

Nausea. Both levodopa and dopamine agonists may produce significant nausea. Patients who experience milder nausea might benefit from taking their medication with meals. Dopamine that is converted from levodopa in the periphery by dopamine decarboxylase is thought to produce nausea by stimulating dopamine receptors in the area postrema in the brainstem. A daily dose of 75 mg of carbidopa (as provided by three tablets) can be taken with the first morning dose or with each dose of carbidopa/levodopa.

Additional problems. A dystonic dyskinesias, while stimulation of the subthalamic nucleus benefits patients primarily by enabling them to greatly reduce their dopaminergic medications. Patients generally respond well to deep brain stimulation surgery, and advanced age should not necessarily be a deterrent. However, because this surgery carries a significant risk of worsening dementia, it should be avoided in those with significant dementia.

MULTIPLE SYSTEM ATROPHY

Multiple system atrophy (MSA) is a sporadic disease with an estimated prevalence of 2 to 4 per 100,000 population. It is equally prevalent among men and women, occurs most often in the sixth decade of life, and is associated with a mean survival of 6 to 9 years, although some patients have lived with the disease for 15 years or more. MSA was previously separated into striatonigral degeneration, olivopontocerebellar atrophy, and Shy-Drager syndrome. However, because these conditions have similar pathologic features, including alpha-synuclein-positive glial cytoplasmic inclusions, they are now thought to represent a single disease. The clinical features of MSA are outlined in Table 1.

Diagnosis

The diagnosis of possible MSA requires one of three criteria (either autonomic failure/urinary dysfunction, parkinsonism, or cerebellar ataxia) plus two characteristic features from the other two clinical criteria domains. A fourth clinical domain (corticospinal dysfunction) is included as a feature but is not a defining criterion. The diagnosis of probable MSA requires the criterion for autonomic failure/urinary dysfunction plus poorly levodopa-responsive parkinsonism or cerebellar ataxia. The diagnosis of definite MSA requires pathologic confirmation.

Although study results differ, most patients with MSA show normal intellectual function with relatively mild memory and executive dysfunction. Unlike patients with PD, patients with MSA and predominantly parkinsonian features typically present with prominent midline and symmetric limb involvement. In MSA, gait instability often develops rapidly, and most patients are wheelchair-dependent within 3 to 5 years. Unlike those with progressive supranuclear palsy, patients with MSA do not normally experience regular falls from the outset. Patients with prominent cerebellar features generally have additional features to suggest MSA but occasionally may present with a pure cerebellar syndrome, including scanning dysarthric speech, limb ataxia, and a wide-based ataxic gait. A dystonic involvement tends to be more severe.
than in PD. Erectile dysfunction almost always accompanies MSA in males. Urinary incontinence or retention and orthostatic hypotension are also frequent symptoms. The finding of hypodense signal in the putamen on gradient echo sequences can help to differentiate MSA from PD but is also commonly seen in progressive supranuclear palsy.

Treatment

Some patients with MSA show a limited, mostly temporary response to antiparkinsonian medications. Others, often erroneously diagnosed with PD, may improve considerably when weaned from high doses of antiparkinsonian medications. A trial of at least 1,000 mg/day of levodopa is recommended to assess for potential efficacy, and dopamine agonists may be tried as well, with care taken not to worsen preexisting hypotension. Treated patients often quickly show orofacial and cervical dystonic dyskinesias, which strongly suggest a diagnosis of MSA. Most investigators have suggested that deep brain stimulation has no beneficial role in treating MSA and may even be detrimental. There are no established therapies for the cerebellar ataxic features.

Inspiratory stridor due to vocal cord dysfunction is a common feature in MSA and is associated with poor survival. Continuous positive airway pressure can be well tolerated by most MSA patients with nocturnal stridor and has been suggested to reduce the risk of sudden death during sleep. A spirogram also commonly leads to early death, and initiation of periodic swallowing evaluations is indicated in most patients within 5 years of disease onset. Early involvement of physical, occupational, and speech therapists is critical to the overall well-being of the patient. Because MSA is a devastating illness, the patient and family require emotional support and care planning.

PROGRESSIVE SUPRANUCLEAR PALSY

Progressive supranuclear palsy (PSP) is a rapidly progressive disease that is mainly sporadic, occurs more commonly in men, and has an estimated prevalence of 5 to 6 per 100,000 population. It manifests after age 45, peaks early in the seventh decade of life, and is associated with a median survival of approximately 6 years (range, 1 to 17 years). The pathology includes prominent neuronal loss and aggregates of abnormal tau protein in the substantia nigra, basal ganglia, and brainstem. Its major clinical features are presented in Table 1.

Diagnosis

A number of criteria have been proposed for the diagnosis of PSP, including the National Institute of Neurological Disorders and the Society for Progressive Supranuclear Palsy (NINDS–SPSP) criteria, which are summarized as follows:

- **Possible PSP**: gradual progressivity of symptoms with onset at age 40 or later and either vertical supranuclear gaze palsy or both slowing of vertical saccades and prominent postural instability with falls in the first year of onset, plus no evidence of other diseases that could explain these features.
- **Probable PSP**: vertical supranuclear gaze palsy, prominent postural instability, and falls in the first year of onset, as well as the other features of possible PSP.
- **Definite PSP**: a history of probable or possible PSP and histopathologic evidence of typical PSP.

Criteria that support the diagnosis of PSP and exclude diseases often confused with PSP are also presented in the NINDS–SPSP report. The criteria for probable PSP are highly specific, making them suitable for therapeutic, analytic epidemiologic, and biologic studies, but not very sensitive. The criteria for possible PSP are substantially sensitive, making them suitable for descriptive epidemiologic studies, but less specific.

Most patients with PSP begin to experience recurrent falls from the outset. Other early symptoms include bradykinesia, dystonia, dysphagia, and various visual complaints. Early on, most patients show subtle gaze-initiation delays and square-wave jerks. Hallmark vertical and later horizontal gaze palsies are not generally an early feature and may never develop in some cases. While elderly persons often show limited upward gaze, downward gaze palsies are highly suggestive of PSP. Most patients will eventually develop a frontal lobe syndrome characterized by apathy and executive dysfunction. Midbrain atrophy on magnetic resonance imaging (MRI) can be diagnostic. However, imaging is essential to rule out other potentially treatable disorders, including hydrocephalus.

DEMENTIA WITH LEWY BODIES

Dementia with Lewy bodies (DLB) is believed to be a sporadic disease, with an estimated prevalence of 0.3% in those over age 65 and as high as 5% in those...
over age 85. Because these patients manifest A D-like dementia and often show parkinsonian features (Table 1), DLB is frequently confused with these conditions. Furthermore, the pathology of DLB has features of PD and A D, being defined by widespread deposition of neocortical and brainstem Lewy bodies and a variable degree of A D-type pathology. However, early on in PD, dementia is usually absent or relatively mild, and if hallucinations occur, they can almost always be attributed to antiparkinsonian medications or to a concurrent illness. Moreover, the motor features in PD tend to be more prominent than in DLB. In A D, extrapyramidal features are generally absent or particularly subtle, especially early on.

Diagnosis
Consensus guidelines for the clinical diagnosis of DLB established the primary criterion as progressive cognitive impairment of sufficient severity to disrupt normal functioning. Other central diagnostic features include the following:

- Fluctuating cognition, with prominent changes in attention and awareness early in the course of illness
- Complex and recurring visual hallucinations
- Parkinsonian features that should not precede the onset of dementia by more than 1 year.

In addition to the primary criterion, two of these three features are required for a diagnosis of probable DLB and one for possible DLB. These criteria were reported to permit a very high diagnostic specificity but a lower sensitivity. It has been suggested, however, that the low sensitivity might be improved by better means of identifying cognitive fluctuations. Episodes of staring into space, periods of disorganized and illogical speech, and excessive daytime drowsiness have also been reported to occur more commonly in DLB than in A D, but these features require further validation.

Treatment
The role of cholinesterase inhibitors in DLB remains controversial. Severe sensitivity reactions have been described with most neuroleptics, including clozapine. However, no similar reaction has been described with quetiapine, and this agent has generally been well tolerated by patients with DLB. The use of quetiapine may be necessary to permit patients to tolerate even low doses of levodopa. A though not adequately established, the effectiveness of levodopa in DLB is probably less than in PD. Dopamine agonists should, as a rule, be avoided, because of their cognitive side effects.

SMALL-VEssel ISCHEMIC DISEASE

Small-vessel ischemic disease (SVID) is a common, though underrecognized, cause of gait disturbances and dementia in the elderly and has been etiologically associated most closely with chronic hypertension. When dementia is associated with SVID, the condition is regularly referred to as Binswanger disease. In SVID, small, penetrating arterioles within the white matter and basal gray matter undergo prominent thickening of their media and vascular walls, with lipohyalinotic degeneration. These pathologic changes are distinctly different from larger-vessel atherosclerotic disease, which can be associated with multi-infarct disease, another form of vascular dementia. Its clinical features are outlined in Table 1.

Diagnosis
Diagnostic criteria for Binswanger disease have been proposed but have not been validated. According to these criteria, the following must be present:

- Dementia
- Two of the following:
 1. A vascular risk factor or evidence of systemic vascular disease
 2. Evidence of focal cerebrovascular disease (focal neurologic signs, including hyperreflexia and Babinski signs)
 3. Evidence of “subcortical” dysfunction, such as a parkinsonian, magnetic, or senile gait, gegenhalten (involuntary resistance to passive limb movement), or incontinence due to a spastic bladder
- Bilateral leukoaraiosis on computed tomography (CT) or bilateral multiple or diffuse white matter lesions each measuring more than 2 mm² on MRI
- A bsence of multiple or bilateral cortical lesions on CT or M RI
- A bsence of severe dementia (eg, Mini-M ental State Examination score >10).

Patients with SVID present with an insidious or stepwise progression and often have had one or more hemiparetic strokes. The associated dementia is typical of other subcortical dementias and, at least early on, can usually be differentiated from A D by more prominent apathy, perseverative behavior, “executive dysfunction” (including impairment in conceptualization and manipulation of information), and relatively retained insight and memory retrieval. Most patients eventually develop urinary incontinence, which often leads to differential consideration of normal-pressure hydrocephalus. Furthermore, confirmatory white matter changes on T₂-weighted M RI for SVID can also be
seen with transependymal diffusion of cerebrospinal fluid (CSF) in cases of hydrocephalus and, to some extent, may be seen without a clinical correlate.

Treatment

Treatment of SVID is symptomatic, and prevention controls potential risk factors, including hypertension.67

NORMAL-PRESSURE HYDROCEPHALUS

Normal-pressure hydrocephalus (NPH) occurs predominantly during the sixth and seventh decades of life. Its clinical features are summarized in Table 1. Subarachnoid hemorrhage, meningitis, and cranial trauma are well-established predisposing causes, although it is a misconception that such conditions cause NPH by blocking CSF absorption across the arachnoid villi. Although NPH is a rare condition, it is frequently entertained clinically or mentioned on brain CT and MRI radiology reports in the elderly and should never be overlooked, as it is potentially treatable with surgery. On the other hand, establishing the diagnosis can be challenging, and ventriculoperitoneal shunting should be considered only with the knowledge that rates of immediate and remote surgical complications are high, estimated to be around 38% for permanent neurologic deficits and 6% for death.76 At the same time, in the appropriate patient, surgery can produce dramatic resolution of gait problems and can stabilize, though not improve, cognitive deficits.77

Diagnosis

NPH is classically recognized as a triad of gait disturbance, altered mentation, and sphincter disturbance.78 The gait disturbance is an early and prominent feature, while cognitive impairment may be subtle or even absent. The diagnosis is unlikely when dementia precedes the gait problem, is severe, or is the predominant clinical feature. Urinary urgency is almost always present early on, but incontinence is typically a later feature. The gait may be ataxic and wide-based, may be characterized by difficulty in initiation (“magnetic gait”), or may appear parkinsonian with short steps and shuffling. Cognitive deficits are characterized by apathy and mental slowness79 and are usually distinguishable from AD-type dementia but not from other subcortical dementias.

Supportive radiologic imaging findings include ballooning of the frontal horns of the lateral ventricles, normal-sized or occluded sylvian fissures and cortical sulci, and modest to no white matter lesions. MRI can be used to define periventricular and white matter ischemic disease and hippocampal atrophy. Milder ischemic white matter disease should not necessarily preclude surgical consideration and may directly result from NPH. In most cases it is worthwhile to obtain one or more diagnostic large-volume taps (30 to 50 mL of CSF). However, although a positive result appears to be highly predictive, the predictive accuracy of a negative tap may be low.80 Other diagnostic methods that have been advocated include assessment of the response to 3 to 5 days of more continuous CSF drainage via an external lumbar drain81–83 and measurement of B waves on continuous intracranial pressure monitoring.84 Isotope cisternography is generally considered to be unreliable.76,77,85

ESSENTIAL TREMOR

Essential tremor (ET) has estimated prevalence rates of 0.4% to 3.9% in the general population and 1.3% to 5.1% in persons older than 60.86 It is thought to have an autosomal dominant mode of inheritance,87–90 and susceptibility genes have been localized to chromosomes 2 and 3.91,92 The pathophysiologic basis for ET is not well understood but probably originates from abnormal cerebellar signaling, possibly involving the inferior olive.93,94

Diagnosis

The diagnosis of ET requires one of the following:

- Bilateral postural or kinetic tremor of the hands95
- Isolated head tremor without evidence of dystonia.

The exclusion criteria are (1) other abnormal neurologic signs, (2) recent neurologic trauma preceding the onset of tremor, (3) presence of known causes of enhanced physiologic tremor (eg, drugs, anxiety, depression, hyperthyroidism), (4) history or presence of psychogenic tremor, (5) sudden onset or stepwise progression, (6) primary orthostatic tremor (predominantly in the legs upon standing), (7) isolated position-specific or task-specific tremors (eg, occupational tremors, primary writing tremor), and (8) isolated tremor in the voice, tongue, chin, or legs.96

ET commonly affects the hands or forearms, head, and larynx. The arms are involved bilaterally, though often asymmetrically. Rest tremor may be present but is not the predominant feature.88 A melioration with alcohol and a positive family history are supportive historical information. Occasionally, cognitive and personality disturbances may occur, involving verbal fluency, mental set-shifting, disinhibition, emotional blunting, and depression.97 Comparable impairments in executive functioning and personality have been described after cerebellar lesions.98
Treatment
The anticonvulsant primidone may be the most effective agent for treating ET, but it is often poorly tolerated. Beta-blockers are the preferred alternative but may have cardiovascular side effects. Among beta-blockers, although both propranolol and atenolol are often effective, some studies suggest that propranolol may be therapeutically superior to atenolol. Benzodiazepines, including alprazolam, and the anticonvulsant topiramate can also benefit patients with ET. See Table 3 for recommended dosages of medications for ET.

Deep brain stimulation of the ventral intermediate nucleus of the thalamus can provide good long-term benefits in cases of severe, medically intractable ET, including good efficacy for head tremor with bilateral surgery.

TARDIVE DYSKINESIA
Tardive syndromes are characterized by abnormal involuntary movements (most often choreiform or dystonic) or akathisia (a sensation of restlessness that causes often-uncontrollable movements) caused by exposure to a dopamine-receptor-blocking agent within 6 months of the onset of symptoms and persisting for at least 1 month after cessation of the offending drug. In mild cases, stopping the offending drug can frequently lead to remission, but this condition often persists and can be disabling. Tardive dyskinesia (TD) historically refers specifically to rapid, repetitive, stereotypic movements that mostly involve the oral, buccal, and lingual areas, though this term is now often used more globally to describe various tardive syndromes.

Diagnosis and risk factors
The American Psychiatric Association has required 3 months of exposure to an offending drug for a diagnosis of TD, although TD has been reported occasionally in elderly persons after as little as 1 month of exposure.

Elderly patients, especially those with dementia, are the most susceptible population: the risk for TD from traditional neuroleptic drugs in the elderly is 25% to 30%. The risk is substantially lower with second-generation (ie, atypical) neuroleptics, although risperidone has been associated with an annual TD incidence of greater than 2% in elderly patients with dementia. A mong neuroleptics, clozapine and quetiapine have the lowest reported incidence of TD and have been convincingly shown to induce TD only in patients who were exposed to additional neuroleptics. Drug-induced parkinsonism, like TD, also occurs much more often in the elderly. In contrast, younger people are primarily at risk for acute neuroleptic-induced dystonia, while age does not appear to influence the development of tardive akathisia (persistent motor restlessness). Higher doses of antipsychotics and concurrent use of anticholinergic medications are associated with a higher risk.

Huntington disease is a rare condition that should not be confused clinically with TD, as it usually starts in early adult life and is rapidly fatal.

Treatment
The most important intervention for TD is preventive: agents that block the dopamine receptor, including metoclopramide, must be prescribed only after establishing medical necessity. When possible, the offending agent should be discontinued immediately with the hope of facilitating a remission. Switching to an atypical neuroleptic may be considered in patients with active psychosis or in whom TD is brought on or worsened as a result of lowering the inciting agent. Among potential treatments (Table 3), the dopamine depleter reserpine has been used and can be effective, but dose-dependent depression often limits its usefulness. Tetrabenazine, another monoamine depleter, but with additional dopamine-receptor-blocking properties, is expected to be approved soon for use in the United States and may offer a more favorable benefit-to-side effect profile compared with reserpine. A number of other agents, such as vitamin E and benzodiazepines (including clonazepam), may have some efficacy in milder cases, although studies have reported conflicting responses to these agents. Although anticholinergic medications may benefit patients with acute dystonic dyskinesias, they may worsen orofacial dyskinesias. Botulinum toxin injections may be useful for isolated blepharospasm or torticollis. Based on limited case reports, deep brain stimulation appears to be effective for treating medically intractable TD, including its orofacial symptoms.

RESTLESS LEGS SYNDROME
Restless legs syndrome (RLS) is thought to have an autosomal dominant pattern of inheritance with an estimated prevalence among adults of 10% to 12%. The prevalence increases to around 19% in those 80 years or older, and symptoms tend to worsen with age. RLS is defined by four obligatory criteria:

- Urge to move the legs
- Worsening of symptoms with rest
- Relief with activity
- Intensification during the evening.
RLS can cause enormous anxiety and, along with the frequent accompaniment of periodic limb movements of sleep, often leads to sleep deprivation. Offending medications, including selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, lithium, antihistamines, and neuroleptics, should be discontinued. Morning fasting serum ferritin, vitamin B12, and folate levels should be measured, and iron supplementation should be instituted to achieve a ferritin level of less than 50 µg/L (low-normal range). Patients should be counseled to avoid prolonged idleness and sleep deprivation. Milder cases can occasionally be tempered with a sedative to promote sleep. However, benzodiazepines should be provided to elderly patients only after weighing such associated risks as inducing falls, confusion, and disinhibition. Clonazepam probably offers no therapeutic advantage, and short-acting agents may be preferable.

Among treatment options for RLS (Table 3), dopamine agonists can generally be considered first-line agents, even in the elderly, with close monitoring for potential adverse effects. Doses can be increased above those shown here if depression does not occur. Adverse effects apply to both dopamine agonists (pramipexole and ropinirole). In view of the risk for augmentation (see text), carbidopa/levodopa should be used only as a last resort.

TABLE 3
Pharmacologic treatments for common nonparkinsonian movement disorders in the elderly

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Class</th>
<th>Medication</th>
<th>Typical starting dose</th>
<th>Titrating</th>
<th>Usual therapeutic dose</th>
<th>Maximum dose</th>
<th>Common adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential tremor</td>
<td>Antiepileptics</td>
<td>Primidone</td>
<td>50 mg at bedtime</td>
<td>50 mg/wk</td>
<td>50-100 mg bid</td>
<td>250 mg/day</td>
<td>Sedation, unsteadiness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topiramate</td>
<td>25 mg/day</td>
<td>25 mg/wk</td>
<td>50-100 mg bid</td>
<td>400 mg/day</td>
<td>Weight loss, psychomotor slowing</td>
</tr>
<tr>
<td></td>
<td>Beta-blocker</td>
<td>Propranolol</td>
<td>20 mg/day</td>
<td>20 mg/wk</td>
<td>120-160 mg bid</td>
<td>320 mg/day</td>
<td>Hypotension, bradycardia, depression, fatigue, bronchospasm*</td>
</tr>
<tr>
<td>Selective beta-blocker</td>
<td></td>
<td>Atenolol</td>
<td>12.5 mg/day</td>
<td>12.5 mg/wk</td>
<td>50-100 mg/day</td>
<td>100 mg/day</td>
<td></td>
</tr>
<tr>
<td>Tardive dyskinesia</td>
<td>Dopamine depleter</td>
<td>Reserpine†</td>
<td>0.125 mg/day</td>
<td>0.125 mg/wk</td>
<td>0.375-2 mg/day</td>
<td>4.5 mg/day</td>
<td>Depression, sedation, hypotension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetrabenazine</td>
<td>25 mg/day</td>
<td>25 mg/wk</td>
<td>100-200 mg/day</td>
<td>200 mg/day</td>
<td>Depression, sedation, hypotension, parkinsonism</td>
</tr>
<tr>
<td></td>
<td>Beta-blocker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restless legs syndrome</td>
<td>Dopamine agonists</td>
<td>Pramipexole</td>
<td>0.125 mg at bedtime</td>
<td>0.5 mg q3-4d</td>
<td>1-4 mg/day</td>
<td>As tolerated</td>
<td>Sedation, dizziness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ropinirole</td>
<td>0.25 mg at bedtime</td>
<td>0.25 mg q3-4d</td>
<td>1-2 mg at bedtime</td>
<td>9 mg/day</td>
<td>Nausea, vivid dreams, hallucinations, confusion, pedal edema‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbidopa/levodopa</td>
<td>25/100 mg at bedtime</td>
<td>25/100 mg q3-4d</td>
<td>25/100 mg at bedtime</td>
<td>As needed</td>
<td>Nausea, vivid dreams, augmentation§</td>
</tr>
<tr>
<td></td>
<td>Narcotic</td>
<td>Methadone</td>
<td>2.5 mg/day</td>
<td>5 mg/wk</td>
<td>5-25 mg/day</td>
<td>40 mg/day</td>
<td>Sedation, constipation</td>
</tr>
</tbody>
</table>

* Adverse effects apply to both beta-blockers (propranolol and atenolol).
† Because dose-dependent depression and other adverse effects are common with high doses, reserpine should be cautiously titrated in the elderly, with close monitoring for potential adverse effects. Doses can be increased above those shown here if depression does not occur.
‡ Adverse effects apply to both dopamine agonists (pramipexole and ropinirole).
§ In view of the risk for augmentation (see text), carbidopa/levodopa should be used only as a last resort.
ADDITIONAL DIFFERENTIAL CONSIDERATIONS

Besides those already discussed, a few additional conditions enter the differential diagnosis of movement disorders in the elderly patient.

Corticobasal degeneration is a rare disorder that usually presents after age 60 with motor and cognitive dysfunction. The motor involvement is characterized by highly asymmetric akinesia, rigidity, and apraxia, often with prominent dystonia and alien-limb phenomena. Although occasionally mistaken for PD, these clinical features should generally suggest this condition and, moreover, are generally not responsive to dopaminergic therapy.

Cerebellar ataxia. In an elderly patient with cerebellar ataxia, the history and work-up include such considerations as alcoholism, medication side effects, cerebrovascular disease, hydrocephalus, neoplasm, and a paraneoplastic syndrome.

Primary cerebellar degeneration and spinocerebellar ataxias usually present earlier in adulthood.

Peripheral neuropathies and skeletomuscular disorders commonly contribute to gait disorders in the elderly but are generally readily identifiable on physical examination.

Degenerative spine disease and spinal metastases are more common in the elderly and must always be considered in any patient with a spastic gait or sensory ataxia.

De novo psychogenic movement disorders are comparatively infrequent in the elderly population and can be diagnosed only after exclusion of other potential etiologies.

REFERENCES

30. Baron M, Dalton WB. Quetiapine as a treatment for dopaminergic-induced dyskinesias in Parkinson's disease. Mov Disord 2003;

