The role of vasopressin in congestive heart failure

ABSTRACT

Neurohormonal abnormalities contribute to the pathophysiology of congestive heart failure (CHF). Successful approaches to improving the prognosis of patients with CHF are based largely on therapeutic interruption of activated neurohormonal systems. The use of antagonists and inhibitors of the renin-angiotensin-aldosterone and sympathetic nervous systems has significantly improved clinical outcomes in CHF. Excessive secretion of arginine vasopressin (AVP) has the potential for deleterious effects on various physiologic processes in CHF. Inhibition of AVP through vasopressin receptor antagonist therapy is a potentially beneficial new therapeutic approach to CHF.

KEY POINTS

- Stimulation of vasopressin type 1A (V1A) receptors results in vasoconstriction and a positive inotropic effect. Stimulation of vasopressin type 2 (V2) receptors leads to increased water retention.
- Plasma AVP levels are increased or incompletely suppressed in patients with CHF.
- Hyponatremia is associated with poor outcomes in CHF and may be caused or aggravated by excess AVP.
- AVP antagonism, either with a combined V1A/V2 antagonist or a pure V2 antagonist, is a logical and promising therapeutic option in acute and chronic CHF.

Although by no means fully clear, our understanding of the pathophysiology of congestive heart failure (CHF) has evolved greatly over the past 2 decades. Among the chief insights is that hemodynamic derangements do not fully explain the syndrome since hemodynamically oriented therapy is not sufficient, and is sometimes even harmful. Recent attention has focused on the role of neurohormonal imbalances as important contributors to both load-dependent and load-independent processes that may aggravate CHF.

Among neurohormonal targets for therapy in CHF, arginine vasopressin (AVP) has attracted much recent interest. Indeed, it is increased AVP secretion in heart failure, and its potential to promote hyponatremia and other effects that can lead to CHF progression, that makes CHF a topic of interest for this supplement. This article reviews the role of AVP as it relates to CHF and the potential benefits of AVP antagonism as a new therapeutic option for patients with CHF.

NEUROHORMONES IN HEART FAILURE

Under normal circumstances, acute activation of neurohormonal systems helps preserve circulatory homeostasis and maintain arterial pressure. Chronic excess of these neurohormones, however, plays an important role in the development and progression of CHF. This role has been clearly established by the therapeutic success achieved with agents that are active in interfering with the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system. A ngiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor antagonists, aldosterone antagonists, and beta-blockers have all provided significant clinical benefits in patients with CHF.

The question now is whether further intervention in CHF based on neurohormonal
mechanisms would be useful. Recent studies with endothelin antagonists have not shown benefit, nor has the long-term approach of increasing natriuretic peptide signaling by combining endopeptidase inhibition with an ACE inhibitor. A remaining candidate hormone for therapeutic targeting is AVP, which was one of the three neurohormones proposed as possible contributors to the pathophysiology of CHF in the first paper written describing the “neurohumoral axis” in CHF.12

PHYSIOLOGY OF AVP

Arginine vasopressin has three distinct receptor subtypes (Table 1).13,14 From a cardiovascular perspective, the most important receptors are the vasopressin type 1A (V₁A) and vasopressin type 2 (V₂) receptors. V₁A receptors are located on vascular smooth muscle and cardiac myocytes. These are G protein–coupled receptors, which increase intracellular calcium via the inositol triphosphate pathway. This increase in intracellular calcium results in vasoconstriction and a positive inotropic effect.15 Stimulation of the V₁A receptor also promotes the synthesis of contractile protein in myocytes.16 Stimulation of the V₁A receptors in vascular smooth muscle could therefore increase systemic vascular resistance, increasing impedance to ventricular emptying (ie, afterload) and thereby adversely affect ventricular function in heart failure. Sustained increases in afterload also contribute to myocardial remodeling and progressive failure. Direct stimulation of the myocyte over time may have the same effect.

V₂ receptors mediate their effects via adenylyl cyclase–dependent signaling in the renal collecting ducts. Activation of these receptors increases water retention, which is accomplished by upregulation of the aquaporin-2 water channels.17 This upregulation results in an increased movement of water from the collecting ducts back into the plasma, increasing free water reabsorption, which leads to increased water retention. This effect, if sustained, may contribute to volume expansion that exacerbates diastolic wall stress in CHF, another mechanism that may contribute to ventricular remodeling and dysfunction. Depending on the balance of factors influencing water and sodium intake and excretion, V₂ receptor–mediated water retention may also contribute substantially to hyponatremia, a common condition in moderate and severe CHF.

ROLE OF AVP IN HEART FAILURE

Plasma AVP levels are increased, or at least incompletely suppressed, in patients with chronic stable CHF and acute decompensated CHF18–23 (Figure 1). As with other neurohormones, plasma AVP levels correlate with adverse outcome in CHF and tend to be much higher in severe CHF, or soon after major insults such as myocardial infarction (MI). A cause-and-effect relationship between inappropriate AVP levels and CHF progression has not yet been proven, but if experience with the other neurohormonal systems is a guide, increased AVP is likely not just an epiphenomenon.

As discussed above, a number of mechanisms related directly to the physiologic effects of AVP could underlie pathophysiologic contributions (Figure 2). AVP could potentially contribute directly and indirectly to well-characterized load-dependent and load-independent mechanisms that may aggravate progressive ventricular remodeling and failure, as well as the expression of the clinical heart failure syndrome. Congestion, in particular, is a hallmark of decompensated or severe CHF, and the volume retention secondary to excess AVP secretion adds to the volume retention of sodium and water caused by aldosterone and other renal mechanisms. Likewise, hyponatremia, which is associated with poor outcome in CHF, may be caused or aggravated by excessive AVP levels.

Table 1

<table>
<thead>
<tr>
<th>Receptor Subtype</th>
<th>Site of Action</th>
<th>Physiologic Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>V₁A</td>
<td>Vascular smooth muscle</td>
<td>Vasoconstriction, Positive inotropy/mitogen</td>
</tr>
<tr>
<td></td>
<td>Cardiac myocytes</td>
<td></td>
</tr>
<tr>
<td>V₁B (V₃)</td>
<td>Anterior pituitary</td>
<td>ACTH and beta-endorphin release</td>
</tr>
<tr>
<td>V₂</td>
<td>Renal collecting ducts</td>
<td>Free water reabsorption</td>
</tr>
</tbody>
</table>

ACTH = adrenocorticotropic hormone
Reprinted, with permission, from reference 14.
Interfering with either or both the V1A and V2 receptors could therefore, at least theoretically, be of substantial value in chronic or acute CHF.

Ultimately, before a definitive role for AVP in chronic or acute CHF is established, we must establish not just a potential pathophysiologic role and adequate hormone levels or signaling, but evidence that interfering with hormone secretion or effect has a clinically important benefit. This process is just beginning with AVP, but preliminary experimental and clinical results are encouraging.

Experimental models

Many studies in several animal models of CHF have shown acute and moderately sustained beneficial effects of V1A, V2, and combined V1A and V2 antagonism. A more recent study by Naitoh and colleagues assessed the long-term effect of dual V1A and V2 receptor blockade either alone or in combination with an ACE inhibitor in a well-accepted animal model of post-MI remodeling. They found that blockade of V1A and V2 receptors was associated with increased free water excretion, and, when combined with an ACE inhibitor, a degree of reduction in right ventricular mass not achieved with ACE inhibition or AVP blockade alone.

These results establish an active degree of AVP signaling in this setting, and suggest that although blockade of V1A and V2 receptors alone may be of limited utility, a synergistic effect may occur when combined with an ACE inhibitor. Synergy between these two drug classes is relevant clinically in that any benefit of AVP antagonists would have to occur over a background of ACE inhibitor therapy. Other studies on the vascular effects of AVP blockade also suggest important synergies between V1A blockade and interventions that interrupt the RAAS.

Effects in clinical CHF

Reports of the effects of AVP antagonists in clinical CHF are limited. AVP signaling, however, has been shown to be adequate to produce a hemodynamic effect in patients with CHF. Exogenous infusion of AVP produces a fall in cardiac output and an increase in systemic vascular resistance, among significant hemodynamic changes (Figure 3). Following acute administration of a V1A antagonist, plasma levels of vasopressin correlate inversely with the percentage change in systemic vascular resistance in patients with chronic stable CHF. Additionally, acute administration of a pure V2 antagonist has been shown to produce a marked increase in water excretion.

No clinical experience with sustained administration of either a pure V1A antagonist or a combined V1A/V2 antagonist has been reported to date. Administration of a V2 antagonist (tolvaptan) in the setting of acute decompensated CHF is associated with superior early weight loss and a sustained reduction in body weight after up to 60 days of administration.
Serum sodium, when low, remained corrected. This report is encouraging in that it demonstrated sustained effects of a V2 antagonist in clinical CHF. However, there were significant tolerability issues regarding thirst, and a somewhat surprising lack of change in blood pressure despite the significant effect on body weight. Plasma AVP levels have not been reported from this study, but one may expect that they rose in the group of patients on active treatment. A vasoconstrictive effect from unopposed V1A stimulation could therefore have accounted for the lack of fall in blood pressure.

The final article in this supplement reviews in detail the available clinical trials of all AVP antagonists in late-stage development, both in CHF and in other conditions associated with hyponatremia.

CONSIDERATIONS FOR DRUG DEVELOPMENT

With several AVP antagonists under active development for CHF, and potentially more on the way, several factors must be considered in future studies. How to measure efficacy is a major concern, and this decision will depend on the type of compound and the study setting. Mortality is the ultimate endpoint for testing therapies for chronic CHF, and a mortality study with tolvaptan is under way. Given the current low mortality rate in stable CHF, demonstrating a benefit of any new treatment on this endpoint may be a challenge. Hence, looking for benefits on surrogate endpoints such as ventricular remodeling may also be crucial. For both acute and chronic CHF, morbidity and cost of care are also reasonable endpoints, and here the effects of V2 or combined antagonists may be particularly valuable given the potential benefits of these agents on congestion and hyponatremia.

For chronic CHF, the type of antagonist studied may be important. As noted before, the reasons to expect benefit from a V1A antagonist are many, assuming adequate signaling is present. But a pure V1A antagonist may lead to elevated AVP levels and unwanted water retention, which would not be desirable, particularly in patients with well-compensated CHF. Likewise, a pure V2 antagonist, although useful acutely, may lead over time to unwanted V1A stimulation. When AVP levels rise in response to increased osmolality in patients with normal serum sodium levels who receive a V2 antagonist, any level of adverse endogenous AVP stimulation from the V1A side is obviously enhanced. For long-term studies, therefore, it would seem most desirable to combine V1A and V2 antagonism, whereas for acute decompensated CHF, a pure V2 antagonist may be equally useful. These are the types of issues that will need to be resolved with additional clinical studies.

CONCLUSIONS

There is now adequate theoretical justification to pursue AVP antagonism in acute and chronic CHF. AVP is a logical target both in terms of conventional hemodynamic understanding of CHF and in view of the successes of neurohormonally based therapy. Excessive AVP levels are present in clinical CHF, and acute studies with AVP antagonists in both experimental and clinical settings are encouraging. Many issues remain unresolved, however, and much work will be required in the coming years before a meaningful role for AVP in the pathophysiology of CHF can be definitively established.
REFERENCES

10. Kala PR, Moon JC, Coats AJ. Do results of the ENATELA (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol 2002; 85:195–197.

Address: Steven R. Goldsmith, MD, Cardiology Division, Hennepin County Medical Center, 701 Park Avenue South, Minneapolis, MN 55415; srg_hmc@yahoo.com.