Infections in hospitalized patients: What is happening and who can help?

■ ABSTRACT

The continuing emergence of multidrug-resistant bacteria calls for new approaches to the management and treatment of infections in hospitalized patients. Health care–associated infections cause substantial morbidity and mortality while driving up health care resource use and costs worldwide. The continued spread of antimicrobial resistance requires a multidisciplinary approach and closer collaboration among health care providers, especially hospitalists, pharmacists, infection control practitioners, and infectious disease specialists. Such collaboration can potentially reduce treatment failures and minimize the spread of multidrug-resistant organisms between health care settings and the community.

■ KEY POINTS

Surveillance studies show that antimicrobial resistance among some community-associated pathogens and several key nosocomial pathogens is increasing at an alarming rate.

Widespread emergence of resistant pathogens and transmission of some pathogens between health care and community settings suggest that providers can no longer practice in an independent or isolated manner.

Greater partnership among providers in multiple disciplines and all health care settings is urgently needed to combat the challenge of multidrug-resistant bacteria.

Nosocomial infections, also known as hospital-acquired or health care–associated infections, are a significant public health concern. These infections are estimated to occur in 5% to 10% of acute care hospitalizations in the United States, representing more than 2 million episodes per year. The highest rates are seen in intensive care units and acute care surgical and orthopedic wards. Nosocomial infections are responsible for more than 90,000 US deaths per year and millions of additional days of hospitalization; the annual cost of treating these infections in the United States is estimated to exceed $4.5 billion.1

Despite these substantial effects in terms of morbidity, mortality, and health care costs, many nosocomial infections can be prevented if health care providers take proper precautions when caring for patients. Providers in a wide range of disciplines—intensivists, hospitalists, surgeons, infectious disease specialists, primary care clinicians, microbiologists, nurses, pharmacists—need to collaborate and arrive at a coherent control strategy to both minimize and effectively treat these infections.

This article sets the stage for the remainder of this supplement by outlining the challenges posed by antimicrobial resistance among key nosocomial and community-associated pathogens and the rationale for multidisciplinary collaboration in combatting these challenges.

■ THE HEART OF THE CHALLENGES: ANTIMICROBIAL RESISTANCE

Nosocomial infections have become more troublesome in the 21st century with the spread of antimicrobial resistance. Approximately 70% of nosocomial infections are attributable to antibiotic-resistant organisms, including multidrug-resistant bacterial strains, which complicates the management of infections in all health care settings (hospital, office or clinic, and nursing home). In an increasingly complex patient population, misuse and overuse of broad-
spectrum antibiotics, coupled with suboptimal infection control practice among health care providers and institutions, have contributed to the changing scope of nosocomial infections and created new treatment challenges.

Lower respiratory tract infections (eg, ventilator-associated pneumonia), postoperative wound infections, complicated intra-abdominal infections, catheter-associated bacteremia, and urinary tract infections are the most common nosocomial infections. Bacteria are responsible for the majority of these infections, with staphylococci, enterococci, Enterobacteriaceae, and Pseudomonas species recovered most often. Recent surveillance studies have demonstrated that antimicrobial resistance among key nosocomial pathogens is increasing at an alarming rate.1-6 Over the past decade, several gram-positive and gram-negative organisms have become especially problematic:

- Methicillin-resistant Staphylococcus aureus (MRSA)
- Vancomycin-resistant enterococci
- Beta-lactam–resistant and multidrug-resistant pneumococci
- Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis organisms with extended-spectrum beta-lactamases (ESBLs)
- Enterobacter species and Citrobacter freundii with high-level third-generation cephalosporin (Amp C) beta-lactamase resistance
- Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia organisms with genes for multidrug resistance (to imipenem, fluoroquinolones, and third-generation cephalosporins).

Shifting epidemiology of methicillin-resistant S aureus

One particular concern is the changing epidemiology of MRSA with the appearance of these typically nosocomial strains in the community setting (ie, community-acquired MRSA).7 Notably, the incidence of community-acquired MRSA appears to be increasing with its emergence independent of a hospital reservoir.8-10 Community-acquired MRSA, which typically occurs in healthy, immunocompetent individuals, has been associated with serious and sometimes fatal illness (eg, necrotizing pneumonia or fasciitis),11 likely because of its greater number of virulence factors compared with hospital-acquired MRSA strains.12,10 Even more disturbing, however, are recent reports of transmission of community-acquired MRSA strains back into the hospital environment as a cause of nosocomial infection.12,14 In some cases, community-acquired MRSA has replaced hospital-acquired strains, thereby creating potential infection control challenges and future antimicrobial resistance issues (ie, emerging resistance to non–beta-lactam antibiotics).

Overall, the epidemiology, infection types, and antimicrobials of choice differ between community- and hospital-acquired MRSA infections.15,16 To best manage their patients, clinicians need to be familiar with the unique properties of these infections.

Proliferation of problematic CTX-M enzymes

Another ominous concern from the past decade is the discovery of CTX-M enzymes (named for their predominant activity against cefotaxime), which have become the most prevalent ESBLs in health care and community settings alike.17-20 Gram-negative organisms possessing these plasmids carry aminoglycoside, tetracycline, sulfoxamidine, or fluoroquinolone resistance genes. While nosocomially acquired CTX-M–producing Enterobacter or Klebsiella species were initially dominant, these resistant enzymes have migrated to many other Enterobacteriaceae organisms and to P aeruginosa. Furthermore, ESBLs of the CTX-M type also have invaded the community setting. CTX-M–producing E coli is a rapidly developing problem, especially among compromised patients with community-acquired urinary tract infections (eg, those with underlying disease, recent antibiotic use, or health care contact). Although the precise mode by which these organisms are spread remains unclear, they are being isolated more frequently and are no longer confined to hospitals.19

Other worrisome pathogens

Other emerging pathogens of concern include carbapenem-resistant K pneumoniae isolates21 and a new, highly virulent strain of Clostridium difficile.22 In addition to nosocomial infections, there has been a rise in the number of community-acquired cases of C difficile–associated diarrhea.23 Because both K pneumoniae and C difficile are resistant to virtually all commonly used antibiotics, control of their spread—via active surveillance, antibiotic stewardship, and meticulous attention to contact precautions—is crucial.

Multidisciplinary collaboration needed

The continued emergence of multidrug-resistant gram-positive and gram-negative bacteria in health care and community settings calls for a collaborative effort to reduce treatment failures and to minimize the spread of these bacteria between health care settings and within the community. All clinicians need to keep up-to-date on resistance patterns (with the
WHAT IS HAPPENING AND WHO CAN HELP?

The widespread emergence of resistant pathogens, including transmission of some pathogens between health care and community environments, suggests that health care providers can no longer practice in an independent or isolated manner. Traditional provider roles are well recognized, but further collaboration is needed to deal with the proliferation of multidrug-resistant organisms. Key providers who can help include primary care clinicians, hospitalists, and infectious disease specialists.

The primary care clinician is the patient’s first accessible health care contact and serves as an advocate for patients as well as an intermediary between patients and the health care system. The previously mentioned emergence of MRSA and C difficile infections in community settings demands that primary care clinicians be aware of the features of these infections and aware of appropriate treatments and infection control measures.

Hospitalists represent a relatively new physician specialty whose primary focus is the care of hospitalized patients. Hospital medicine has been recognized as a defined field in the United States for about 10 years and is the nation’s fastest-growing physician specialty. The current number of hospitalists—approximately 15,000—is anticipated to at least double in the next 5 to 10 years. As originally conceived, the role of the hospitalist is to accept “hand-offs” of hospitalized patients from primary care physicians, provide expert inpatient care to these patients, and then return these patients to the care of their primary care physicians at discharge. Hospitalists also have the opportunity to serve as systems leaders by effecting changes to improve the health outcomes of hospitalized patients. They frequently serve on hospital committees, help develop clinical guidelines, and lead multidisciplinary teams to optimize patient care.

Infectious disease specialists are often consulted in cases of undiagnosed symptoms or conditions. They diagnose and treat infections, scrutinize microbial susceptibility patterns, serve on infection control and formulary committees, establish antibiotic guidelines, provide consultation on optimal antimicrobial use in the hospital setting, and supervise parenteral antimicrobial use outside the hospital.

A need for new multidisciplinary approaches

New approaches are needed for the management and treatment of nosocomial infections caused by multidrug-resistant organisms. While several specific strategies have been suggested to improve the outcomes of patients with severe bacterial infections—such as the use of treatment guidelines, antibiotic prophylaxis restrictions, the use of antibiotics in combination, de-escalation therapy, cycling therapy, and short-course therapy—a multidisciplinary approach is essential. Closer collaboration among hospitalists, pharmacists, infection control practitioners, and infectious disease specialists can potentially bridge the gap between global strategies and individual patient needs. Such collaboration also must extend to primary care clinicians and continuity-of-care providers. The need for teamwork is highlighted in recently published guidelines from the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America on developing an institutional program to enhance antimicrobial stewardship.

Finally, it is impossible to overstate the importance of appropriate infection control measures and continued surveillance of resistance patterns. In many cases, surveillance efforts will require institutional support in the form of information technology services to ensure that accurate real-time information is available to clinicians and policymakers.

THE SCOPE OF THIS SUPPLEMENT

It is in this context that this journal supplement aims to update clinicians on the challenges of infections in hospitalized patients and increasing antimicrobial resistance in the 21st century. Dr. Thomas M. File, Jr takes the supplement from here with a detailed overview of the impact of community-acquired MRSA in the hospital setting. Next, Dr. Louis B. Rice discusses emerging issues in the treatment of infections caused by multidrug-resistant gram-negative organisms. Drs. James I. Merlino and Mark A. Malangoni then describe empiric treatment options for compli-
icated skin and soft-tissue infections, and Dr. John A. Weigelt outlines empiric treatment options for complicated intra-abdominal infections. Finally, Drs. Morton P. Goldman and Radhika Nair explore the role of pharmacoeconomics in the antimicrobial formulation decision-making process as well as the economic impact of antimicrobial resistance.

Our hope is that readers will come away from this supplement better equipped to contribute to the multidisciplinary efforts urgently needed to combat the challenges posed today by serious infections. Success will demand that we all be informed and involved.

■ REFERENCES

Correspondence: Alpesh N. Amin, MD, MBA, Professor and Executive Director, Hospitalist Program, University of California, Irvine, 101 The City Drive South, Building 58, Room 110, ZC-4076H, Orange, CA 92868; aamin@uci.edu.