Amputees face many challenges associated with residual limbs. Overall, amputees have an increased risk for skin disease occurring at residual limb sites. Although prosthetists and primary care physicians often accomplish routine care, the dermatologist plays a very important role within the multidisciplinary team. Many military dermatologists have unique clinical experience treating amputees, as a portion of their practice consists of providing care to soldiers with traumatic amputations from complex and dramatic blast injuries. Although current therapies and preventative treatments are for the most part successful, future research involving advanced technology is promising.

Complications Following Amputation

Although US military servicemembers who undergo amputations receive the very best prosthetic devices and rehabilitation resources, they still experience prosthesis
abandonment. Despite the fact that prosthetic limbs and prosthesis technology have substantially improved over the last 2 decades, one study indicated that the high frequency of problems affecting tissue viability at residual limbs is due to the age-old problem of prosthetic fit. In patients with the most advanced prostheses, poor fit still results in mechanical damage to the skin, as the residual limb is exposed to unequal and shearing forces across the amputation site as well as high pressures that cause a vaso-occlusive effect. Issues with poor fit are especially important for more active patients, as they normally want to immediately return to their vigorous preinjury lifestyles. In these patients, even a properly fitting prosthetic may not be able to overcome the fact that the residual limb skin is not well suited for the mechanical forces generated by the prosthesis and the humid environment of the socket. Another complicating factor is the dynamic nature of the residual limb. Muscle atrophy, changes in gait, and weight gain or loss can lead to an ill-fitting prosthetic and subsequent skin breakdown.

There are many case reports and review articles describing the skin problems in amputees. The Table summarizes these conditions and outlines treatment options for each.

Most skin diseases on residual limbs are the result of mechanical skin breakdown, inflammation, infection, or combinations of these processes. Overall, amputees with diabetes mellitus and peripheral vascular disease tend to have skin disease related to poor perfusion, whereas amputees who are active and healthy tend to have conditions related to mechanical stress. Bui et al. reported ulcers, abscesses, and blisters as the most common skin conditions that occur at the site of residual limbs; however, other less common dermatologic disorders, such as skin malignancies, verrucous hyperplasia and carcinoma, granulomatous cutaneous lesions, acneiform dermatitis, and bullous pemphigoid also are seen. Buikema and Meyerle hypothesize that these conditions, as well as the more common skin diseases, are partly from the amputation disrupting blood and lymphatic flow in the residual limb, which causes the site to act as an immunocompromised district that induces dysregulation of neuroimmune regulators.

It is important to note that skin disease on residual limbs is not just an acute problem. Long-term follow-up of 247 traumatic amputees from the Vietnam War showed that almost half of prosthetic users (48.2%) reported a skin problem in the preceding year, more than 38 years after the amputation. Additionally, one-quarter of these individuals experienced skin problems approximately 50% of the time, which unfortunately led to limited use or total abandonment of the prosthesis for the preceding year in 56% of the veterans surveyed.

Other complications following amputation indirectly lead to skin problems. Heterotopic ossification, or the formation of bone at extraskeletal sites, has been observed in up to 65% of military amputees from recent operations in Iraq and Afghanistan. If symptomatic, heterotopic ossification can lead to poor prosthetic fit and subsequent skin breakdown. As a result, it has been reported that up to 40% of combat-related lower extremity amputations may require excision of heterotopic ossification.

Amputation also can result in psychologic concerns that indirectly affect skin health. A systematic review by Mckechnie and John suggested that despite heterogeneity between studies, even using the lowest figures demonstrated the significance anxiety and depression play in the lives of traumatic amputees. If left untreated, these mental health issues can lead to poor residual limb hygiene and prosthetic maintenance due to reductions in the patient’s energy and motivation. Studies have shown that proper hygiene of residual limbs and silicone liners reduces associated skin problems.

Role of the Dermatologist

Routine care and conservative management of amputee skin problems often are accomplished by prosthetists, primary care physicians, nurses, and physical therapists. In one study, more than 80% of the most common skin problems affecting amputees could be attributed to the prosthesis itself, which highlights the importance of the continued involvement of the prosthetist beyond the initial fitting period. However, when a skin problem becomes refractory to conservative management, referral to a dermatologist is prudent; therefore, the dermatologist is an integral member of the multidisciplinary team that provides care for amputees.

The dermatologist often is best positioned to diagnose skin diseases that result from wearing prostheses and is well versed in treatments for short-term and long-term management of skin disease on residual limbs. The dermatologist also can offer prophylactic treatments to decrease sweating and hair growth to prevent potential infections and subsequent skin breakdown. Additionally, proper education on self-care has been shown to decrease the amount of skin problems and increase functional status and quality of life for amputees. Dermatologists can assist with the patient education process as well as refer amputees to a useful resource from the Amputee Coalition website (www.amputee-coalition.org) to provide specific patient education on how to maintain skin on the residual limb to prevent skin disease.

Current Treatments and Future Directions

Skin disorders affecting residual limbs usually are conditions that dermatologists commonly encounter and are comfortable managing in general practice. Additionally, dermatologists routinely treat hyperhidrosis and conduct laser hair removal, both of which are effective prophylactic adjuncts for amputee skin health. There are a few treatments for reducing residual limb hyperhidrosis that are particularly useful. Although first-line treatment of residual limb hyperhidrosis often is topical aluminum chloride, it requires frequent application and often causes considerable skin irritation when applied to residual limbs. Alternatively, intradermal botulinum toxin has been shown to successfully reduce sweat production in individuals with residual limb...
<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Etiology</th>
<th>Signs/Symptoms</th>
<th>Acute Treatment</th>
<th>Long-term Management or Prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acroangiodermatitis</td>
<td>Circulatory problem caused by poor fit of the socket</td>
<td>Pruritic and painful erythematous papules, plaques, or nodules</td>
<td>Adjust prosthesis, oral dapsone, topical steroids</td>
<td>Ablative therapy, surgery</td>
</tr>
<tr>
<td>Allergic contact dermatitis</td>
<td>Allergy to components of socket or sock liner</td>
<td>Dermatitis, erythema, and pruritus in the vicinity of the allergen contact site but can extend beyond those borders if severe</td>
<td>Topical steroids, moisturizer</td>
<td>Patch testing, avoid contact with causative allergen</td>
</tr>
<tr>
<td>Bacterial folliculitis</td>
<td>Rubbing of residual limb hair with socket or sock</td>
<td>Folliculocentric pustule with background erythema</td>
<td>Reduce heat and friction, topical or systemic antibiotics if severe</td>
<td>Laser hair removal</td>
</tr>
<tr>
<td>Callus</td>
<td>Tissue proliferation from friction</td>
<td>Hyperkeratotic papule or plaque in area of friction</td>
<td>Debulking, salicylic acid plaster</td>
<td>Adjust prosthesis</td>
</tr>
<tr>
<td>Eczema</td>
<td>Immune activation</td>
<td>Pruritus with background erythema and hyperkeratosis or xerosis</td>
<td>Topical steroids and calcineurin inhibitors</td>
<td>Intermittent therapy with topical steroids for maintenance</td>
</tr>
<tr>
<td>Epidermal inclusion cyst</td>
<td>Shearing forces</td>
<td>History of tender nodule on the residual limb, in some cases rupture with discharge occurs</td>
<td>Antibiotics, incision and drainage, excision</td>
<td>Adjustment to prosthesis, prosthetic buffers, improve hygiene</td>
</tr>
<tr>
<td>Furunculosis</td>
<td>Infected hair follicle, usually caused by <em>Staphylococcus aureus</em></td>
<td>Painful erythematous nodule</td>
<td>Topical antibiotics, incision and drainage if severe</td>
<td>Improve hygiene, avoid shaving residual limb hair, laser hair removal</td>
</tr>
<tr>
<td>Intertriginous dermatitis</td>
<td>Excess perspiration</td>
<td>Erythematous papules and plaques, especially in the inguinal area or where skin invaginations occur</td>
<td>Improved hygiene, drying powders, topical steroids</td>
<td>Adjust prosthetic, reduce perspiration, botulinum toxin injections</td>
</tr>
<tr>
<td>Irritant contact dermatitis</td>
<td>Exposure to irritants (can be perspiration and friction induced)</td>
<td>Dermatitis, erythema, and pruritus typically appear immediately after contact with irritant (even with first exposure) and does not extend beyond contact area</td>
<td>Topical steroids, barrier cream, moisturizer</td>
<td>Avoid causative irritant, botulinum toxin injections, laser hair removal</td>
</tr>
<tr>
<td>Negative pressure hyperemia</td>
<td>Vascular and lymphatic insufficiency</td>
<td>History of limb volume change with well-demarcated erythema that is tender to palpation</td>
<td>Temporarily stop using prosthesis, moisturizer</td>
<td>Maintain weight, treat edema, adjust prosthesis</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>Immune activation and Köbner response to trauma</td>
<td>Pruritic erythematous plaques with overlying scale</td>
<td>Topical or oral steroids, mild tars, psoralen plus UVA</td>
<td>Adjust prosthesis to decrease injury to residual limb, treat other sites to clear residual limb</td>
</tr>
<tr>
<td>Pyoderma</td>
<td>Bacterial infection (staphylococci or streptococci)</td>
<td>Impetiginous lesions: small reddish macules that become vesicles or tiny blisters that denude and become honey-colored crust</td>
<td>Topical or oral antibiotics depending on the severity</td>
<td>Improve hygiene</td>
</tr>
</tbody>
</table>
A 2017 case report discussed the use of microwave thermal ablation of eccrine coils using a noninvasive 3-step hyperhidrosis treatment system on a bilateral below-the-knee amputee. The authors reported the patient tolerated the procedure well with decreased dermatitis and folliculitis, leading to his ability to wear a prosthetic for longer periods of time. Ablative fractional resurfacing with a CO₂ laser is another key treatment modality central to amputees, more specifically to traumatic amputees. A CO₂ laser can decrease skin tension and increase skin mobility associated with traumatic scars as well as decrease skin vulnerability to biofilms present in chronic wounds on residual limbs. It is believed that the pattern of injury caused by ablative fractional lasers disrupts biofilms and stimulates growth factor secretion and collagen remodeling through the concept of photomicrodebridement. The ablative fractional resurfacing approach to scar therapy and chronic wound debridement can result in less skin injury, allowing the amputee to continue rehabilitation and return more quickly to prosthetic use.

Another encouraging area of research is the involvement of fibroblasts in cutaneous wound healing and their role in determining the phenotype of residual limb skin in amputees. The clinical application of autologous fibroblasts is approved by the US Food and Drug Administration for cosmetic use as a filler material and currently is under research for other applications, such as skin regeneration after surgery or manipulating skin characteristics to enhance the durability of residual limbs. Future preventative care of amputee skin may rely on tracking residual limb health before severe tissue injury occurs. For instance, Rink et al described an approach to monitor residual limb health using noninvasive imaging (eg, hyperspectral imaging, laser speckle imaging) and noninvasive probes that measure oxygenation, perfusion, skin barrier function, and skin hydration to the residual limb tissue currently is being studied.

One interesting area of research in amputee care involves the study of novel ways to increase the skin's ability to adapt to mechanical stress and load bearing and accelerate wound healing on the residual limb. Multiple studies have identified collagen fibril enlargement as an important component of skin adaptation, and biomolecules such as decorin may enhance this process. The concept of increasing these biomolecules at the correct time during wound healing to strengthen the residual limb tissue currently is being studied.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Etiology</th>
<th>Signs/Symptoms</th>
<th>Acute Treatment</th>
<th>Long-term Management or Prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin malignancy</td>
<td>Immunosuppression</td>
<td>SCC; rarely BCC, verrucous carcinoma, or lymphangiosarcoma</td>
<td>Surgical removal, chemotherapy, radiation</td>
<td>Annual follow-up</td>
</tr>
<tr>
<td>Tinea infection</td>
<td>Increased humidity and sweat retention</td>
<td>Pruritic plaques with scale</td>
<td>Antifungal ointment</td>
<td>Reduce perspiration: botulinum toxin injections</td>
</tr>
<tr>
<td>Traumatic neuroma</td>
<td>Severed nerve</td>
<td>Slowly growing, tender, reddish or bluish nodule</td>
<td>Surgical excision, targeted muscular reinnervation of proximal portion</td>
<td>Annual follow-up</td>
</tr>
<tr>
<td>Ulcer</td>
<td>Mechanical stress, bacterial infection</td>
<td>Spectrum from pain and redness over bony prominences to erosion of epidermis or dermis</td>
<td>Light compression and elevation of affected limb, antibiotics, debridement if necessary</td>
<td>Adjust prosthesis, zinc supplementation, evaluate for other secondary causes (eg, circulatory issues, heterotopic ossification)</td>
</tr>
<tr>
<td>Verrucous hyperplasia</td>
<td>Vascular disorder caused by poor prosthetic fit</td>
<td>Verrucous or warty appearance that involves distal portion of the residual limb</td>
<td>Adjust prosthetic fit focusing on altering external pressure on the distal residual limb</td>
<td>Ensure correct fit of prosthesis</td>
</tr>
<tr>
<td>Yeast infection</td>
<td>Increased humidity and sweat retention</td>
<td>Beefy red, confluent areas with scattered discrete papules and plaques</td>
<td>Nystatin, azoles</td>
<td>Reduce perspiration: botulinum toxin injections</td>
</tr>
</tbody>
</table>

Abbreviations: SCC, squamous cell carcinoma; BCC, basal cell carcinoma.
limb. Although these limb surveillance sensors would be employed by prosthetists, the dermatologist, as part of the multispecialty team, also could leverage the data for diagnosis and treatment considerations.

Final Thoughts
The dermatologist is an important member of the multidisciplinary team involved in the care of amputees. Skin disease is prevalent in amputees throughout their lives and often leads to abandonment of prostheses. Although current therapies and preventative treatments are for the most part successful, future research involving advanced technology to monitor skin health, increasing residual limb skin durability at the molecular level, and targeted laser therapies are promising. Through engagement and effective collaboration with the entire multidisciplinary team, dermatologists will have a considerable impact on amputee skin health.

REFERENCES